Шрифт:
Интервал:
Закладка:
3.25. Из точки R1 на три грани пирамиды опущены перпендикуляры одинаковой длины. Если соединить точку R1 со всеми вершинами пирамиды, то этот факт можно будет использовать при сравнении объемов.
3.26. Чтобы найти площадь основания пирамиды, нужно сначала выразить площадь сечения А1В1С1 (см. рис. I.3.26 на с. 127) через ребро куба, а затем воспользоваться соотношением между площадями подобных фигур.
3.27. С помощью боковых ребер x, y, z пирамиды можно записать выражение для ее объема V = xyz/6. Остается выразить x, y и z через a, b и с.
3.28. Если EF — проекция DC на плоскость P, то АЕВF — прямоугольник (докажите). (!!)
Плоскость DCFE разобьет пирамиду АВСD на две равные пирамиды с общим основанием, площадь которого легко вычислить, и высотой, которую можно найти из прямоугольника AFBE.
3.29. Если вы правильно воспользовались первым указанием, то получите рис. II.3.29.
Пусть MN — проекция CD на плоскость P. Тогда СN = DM = 6, MN и AB образуют искомый угол α. Применение метода сравнения объемов для тела АNВMСD позволяет получить уравнение относительно sin α.
3.30. Если ввести в рассмотрение высоту H призмы и сторону a ее основания, то из правильного треугольника В1А1С1 мы легко выразим a через R, а с помощью треугольника DА1Е выразим и H через R. (!!)
Для треугольника DА1E применить метод сравнения площадей.
3.31. Рассмотреть треугольник, образованный высотой тетраэдра, одним из боковых ребер и проекцией этого ребра на плоскость основания, а также подобный ему треугольник, в котором участвует искомый радиус.
3.32. Из всех подобных кубов с центром в точке О удобно выбрать тот, вершина которого, противоположная точке О, лежит на грани параллелепипеда.
3.33. Пусть разность между углами А и С равна φ, а ВD — биссектриса угла В (рис. II.3.33). Легко показать, что α = π/2 + φ/2. Затем удобно представить площадь треугольника АВС как сумму площадей треугольников АDВ и ВDС.
3.34. Расстояние между диагоналями С1D и В1С (рисунок сделайте сами) равно расстоянию между плоскостями А1C1D и АВ1С.
3.35. Основание перпендикуляра, опущенного из точки K на диагональ куба, обозначим через О1. Для треугольника OKO1 можно воспользоваться свойством отрезков, на которые биссектриса делит сторону основания.
3.36. Перемещая взаимно перпендикулярные плоскости параллельно самим себе, мы не изменим проекции четырехугольника. Поэтому разместим одну из плоскостей так, чтобы она проходила через вершину четырехугольника (рис. II.3.36; эта вершина обозначена буквой А). Чтобы построить прямую, по которой пересекаются плоскости АВСD и АВ1С1D1, найдем точку E, в которой пересекаются BC и В1С1. Теперь можно измерить угол между плоскостями АВСD и АВ1С1D1, построив ВF ⊥ ЕА и соединив В1 с F. Угол ВFВ1 равен 45°.
3.38. Найти связь между радиусами шаров и величинами H, ρ и p можно, рассмотрев осевое сечение конуса.
3.39. Если рассмотреть осевое сечение обоих конусов, то задача станет плоской. Чтобы связать радиусы оснований конусов, в качестве вспомогательной величины удобно выбрать радиус сферы.
3.40. Сделав аналогичные построения для второй сферы, можно будет заключить, что, во-первых, треугольник О1ВО2 равнобедренный и, во-вторых, SB — высота пирамиды, объем которой мы ищем. (!!)
Так как BC (постройте этот отрезок на рис. I.3.40) (см. с. 129) — сторона основания правильной пирамиды, то можно доказать, что отрезок прямой EO1 является в треугольнике BEC одновременно медианой и биссектрисой. Это может оказаться полезным при вычислениях.
3.41. В осевом сечении, проходящем через О1 и О3, получим картину, изображенную на рис. II.3.41. Все стороны треугольника О1О3О5 нам известны (О1О3 легко найти из рис. I.3.41) (см. с. 129). Остается определить SD и AD.
3.42. Треугольники ASD и EMK подобны, т. е. углы SAD и MEK равны. Котангенс угла SAD нам известен, так как AD = a, SD = h. (!!)
Из треугольника SDC можно найти радиус основания цилиндра, а затем из треугольника EMK определить EK.
3.43. Рассмотреть подобные треугольники SOA и SO1B, где О1 — центр куба, а B — одна из вершин диагонального сечения куба, параллельного плоскости основания конуса. Это позволит найти одно соотношение между ребром куба а, высотой конуса H и радиусом его основания R (рис. II.3.43). (!!)
Второе соотношение между H, R и а можно будет найти, рассмотрев вторую пару подобных треугольников: SO1B и SO2C. Здесь О2 — середина верхнего ребра куба, а C — одна из вершин этого ребра. Имея в распоряжении два уравнения, можно выразить R и H через а и тем самым решить задачу.
3.44. В предыдущих рассуждениях не использовано условие, согласно которому три стороны трапеции, являющейся боковой гранью пирамиды, равны b. С помощью этого условия можно найти другое выражение площади боковой грани через а и b и приравнять первому. (!!)
Решить полученное однородное уравнение относительно а/b . Остается связать величину b с радиусом вписанного шара. Для этого достаточно рассмотреть треугольник, получающийся при проецировании одной вершины верхнего основания на нижнее.
3.45. Обозначим через О1 и O2 центры меньших шаров, через O3 — центр большего шара, через О — центр шара, радиус которого нужно найти (рис. 11.3.45); Р1 Р2, Р3, P — соответственно точки касания этих шаров с плоскостью. Радиус искомого шара обозначим через x. Тогда известны длины изображенных на рисунке отрезков: О1Р1 = O2Р2 = r, O3Р3 = R, ОР = x, O1O2 = 2r, O1O3 = O2O3 = R + r, OO1 = OO2 = r + x, OO3 = R + x. Мы считаем очевидным, что x < r. (!!)
Нужно найти соотношение, связывающее величины R, r и x. Для этого придется рассмотреть треугольник Р1Р2Р3 и вычислить длины проекций отрезков, соединяющих центры шаров. Так как шары O1 и O2 равны, то O2O3 = O1O3 и, следовательно, Р2Р3 = Р1Р3. Поэтому точка P лежит на высоте и медиане равнобедренного треугольника Р1Р2Р3.
3.46. Обозначим через O1 центр одного из двух равных шаров, а через O3 — центр меньшего шара. Пусть эти шары касаются нижней грани двугранного угла (рис. 11.3.46) в точках В и D соответственно. Прямоугольные треугольники O1АВ и O3CD имеют углы при вершинах А и С, равные α/2 . Чтобы использовать факт касания шаров O1 и O3 и наличие у них общей касательной плоскости Π, нужно рассмотреть треугольник O1O3F, в котором О1О3 = R + r (R — радиус большего шара, r — радиус меньшего шара), O1F = R − r (F — проекция точки О3 на отрезок О1В). Если удастся выразить O3F через R, r и α, то мы получим соотношение, позволяющее определить угол α. (!!)
- Том 18. Открытие без границ. Бесконечность в математике - Энрике Грасиан - Математика
- Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич - Математика
- Математические диктанты. Числовые примеры. Все типы задач. Устный счет. 3 класс - Елена Нефедова - Математика
- Быстрая математика: секреты устного счета - Билл Хэндли - Детская образовательная литература / Математика
- ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров - Математика
- Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Владимир Артурович Левшин - Детская образовательная литература / Математика / Прочее
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Для юных математиков. Веселые задачи - Яков Перельман - Математика
- Игра в имитацию. О шифрах, кодах и искусственном интеллекте - Алан Тьюринг - Прочая околокомпьтерная литература / Математика
- Задачник о смысле жизни - Илья Галахов - Прочая детская литература / Математика / Периодические издания