Рейтинговые книги
Читем онлайн Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 118

1.39. Величину R можно вычислить, построив треугольник, в котором все стороны выражаются через R и известные величины. В качестве такого треугольника удобно выбрать треугольник ОМО1, где О1 — центр рассматриваемой в задаче окружности.

1.40. Ввести в рассмотрение угол ADC (обозначить его через φ) и равный ему угол BEC. Найти tg φ.

1.41. Чтобы применить к треугольнику AOO1 теорему косинусов, придется использовать угол β между хордой AB и диаметром, исходящим из точки А. Косинус и синус этого угла легко выразить через b и r.

1.42. Чтобы использовать условие задачи, нужно соединить центр окружностей с концами и серединами хорд, являющихся сторонами квадрата. При решении следует помнить, что возможны два варианта взаимного расположения квадрата и центра окружностей: либо центр лежит внутри квадрата, либо вне его.

1.43. Чтобы составить уравнение относительно x, рассмотрите треугольник ОЕС, в котором все стороны можно выразить через R и x.

1.44. Ввести обозначения R, r и x, где x — расстояние между проекциями центров на нижнее основание. Составить уравнения, используя условия задачи и теорему Пифагора.

1.45. Чтобы доказать, что фигуры СQNK и ОQR равновелики, достаточно доказать, что равновелики секторы COQ и KDN. Для этого следует выяснить связь между радиусами большей и меньшей окружностей.

1.46. Пусть K — проекция точки O на AB. Отрезок OK можно вычислить двумя способами: из треугольника OAK и из треугольника OKP1.

1.47. Так как хорды пересекаются внутри окружности, то естественно воспользоваться равенством произведений отрезков, на которые каждая хорда делится точкой пересечения.

1.48. Чтобы связать x и R, а именно это требуется в условии задачи, нужно опустить из центра О2 перпендикуляры O2D и О2С на радиусы OA и ОВ соответственно.

Рассмотреть треугольник О2СО1. Выразить О2С через x и R, используя тот факт, что угол ОАВ = 45°.

1.49. Угол АМС равен π − 2φ. Если МВ = МС = рx, то AC можно выразить из треугольников АМС и АВС. Приравняв эти выражения, получим уравнение относительно x.

1.50. Если стороны треугольника а, аd, а + d, то его полупериметр p = 3a/2 . Из формулы Герона получим уравнение относительно а:

Это уравнение нужно решить относительно а. Подберите удобную замену переменной.

1.51. Пусть PP1 — средняя линия треугольника АВС, а QQ1 — средняя линия треугольника PBP1 Пусть далее P1 — точка пересечения PP1 и BR, а Q2 — точка пересечения QQ1 с BR. Убедитесь в подобии треугольников Р2TP и Q2TQ.

1.52. Рассмотрите треугольники с общей вершиной, опирающейся на отрезки, которые участвуют либо в условии задачи, либо в искомом соотношении.

1.53. MN — хорда второй окружности, ее центральный угол МО2N равен 150°, что следует из рассмотрения первой окружности.

1.54. Так как α + β + γ+ δ = 180°, то площадь S четырехугольника АВСD равна

S = ½ab sin (γ + δ) + ½cd sin (α + β) = ½ sin (α + β) (ab + cd).

Далее воспользоваться теоремой синусов, в силу которой а = 2R sin α, b = 2R sin β , ... .

K главе 2

2.1. Осуществить параллельный перенос отрезка DC в точку В.

2.2. Сколько решений имеет задача?

2.3. Точки А и А1 лежат на прямой, параллельной BC и отстоящей от BC на расстоянии . Нужно найти еще одно свойство любой из этих точек; в этом должен помочь угол φ.

Отразив треугольник СА1А от оси А1А, получим треугольник С1А1А (рисунок сделайте самостоятельно). Фигура С1АВА1 — параллелограмм, у которого вершины С1 и В фиксированы, углы известны, а две другие вершины нужно построить.

2.4. Зная R и b, можно построить треугольник АОF (рис. II.2.4). Остается использовать медиану . Чтобы это сделать, нужно, после того как построен треугольник АОF, построить середину отрезка AB.

2.5. Докажите, что точка Q лежит на окружности, описанной около треугольника АВС. Для этого достаточно вычислить угол ВО1С.

2.6. Предположим, что точки D и E найдены (рис. II.2.6). Если через любую точку F, лежащую на AB, провести прямую FG, параллельную и пересекающую АЕ в точке G, а через точку G — прямую GH, параллельную ЕС, то получим четырехугольник AFGH, подобный АDЕС, с центром подобия в точке А.

2.7. «Средним» будет такое положение прямой , когда FM = ME.

2.8. В треугольнике А1АА2 известны основание и высота. Третий элемент этого треугольника можно найти, если использовать данный в условии угол А треугольника АВС, через который легко выразить угол А1АА2.

2.9. Если взять любой из треугольников, образовавшихся при вершине P (рис. 11.2.9), то начало для построения ломаной, составленной из АР, ВР и СР, уже есть. Однако просто пристроить недостающее звено нельзя, так как последняя вершина такой ломаной не будет закреплена, а потому не позволит решить задачу.

На помощь приходит свойство правильного треугольника: поверните треугольник АВР на 60° вокруг точки А и вы получите ломаную В1Р1РС, равную сумме отрезков АР, ВР и СР. При этом точка В1 однозначно определяется видом треугольника АВС.

2.10. Чтобы построить точку С, достаточно знать длину отрезка СЕ или длину отрезка = СЕl. Задача сводится к вычислению и построению отрезка .

2.11. Вершина С лежит, с одной стороны, на окружности радиусом b с центром в точке В, а с другой стороны, на прямой, параллельной АD, которую нетрудно построить.

2.12. Остается построить треугольник ОМС по трем сторонам: СМАО = R, ОС = 2R, ОМ известно, так как точки О и M даны.

2.13. Треугольник ОО1E, где О1E ‖ AB, а точка E лежит на ОС, легко построить, зная О1Еa/2.

2.14. Точки M и N лежат на окружности, концентрической данной.

2.15. Отрезок РQ перенести параллельно в отрезок В1В и рассмотреть угол АРВ1.

2.16. Чтобы построить параллелограмм FBDE на его диагонали, нужно найти еще одну связь между вершинами F и D и данными элементами. Заметим, что точка А еще никак не участвовала в построениях. Если соединить ее с точкой F то получим угол АFЕ, который известен, так как выражается через угол АСВ.

2.18. Воспользоваться тем, что высоты в треугольнике пересекаются в одной точке.

1 ... 36 37 38 39 40 41 42 43 44 ... 118
На этой странице вы можете бесплатно читать книгу Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин бесплатно.
Похожие на Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин книги

Оставить комментарий