Рейтинговые книги
Читем онлайн Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 ... 118

8.7. Так как все коэффициенты уравнения — рациональные числа, то можно предвидеть, что наряду с корнем √3 + 1 должен существовать корень √3 − 1.

8.8. Теоремы Виета недостаточно, так как уравнение в этом случае может вовсе не иметь действительных корней.

8.11. Приравнять остаток нулю и потребовать, чтобы квадратный трехчлен, получившийся в частном, был положителен, т. е. имел отрицательный дискриминант.

8.12. В полученном тождестве следует выбрать x = 2 и x = 3. Получим два уравнения относительно а и b.

8.13. Записать x4 + 1 в виде произведения квадратных трехчленов с неопределенными коэффициентами, раскрыть скобки и воспользоваться условием равенства двух многочленов.

8.14. Многочлен делится на у³, если его свободный член и коэффициенты при у и у² равны нулю.

8.15. Воспользоваться условием тождественного равенства двух многочленов.

K главе 9

9.3. Один способ — дополнить левую часть до полного квадрата, второй — обозначить второе слагаемое через u² и перейти к системе.

9.4. При возведении в куб воспользоваться формулой куба суммы в виде (а + b)³ = а³ + b³ + 3аb(а + b). Выражение а + b заменить правой частью данного уравнения.

9.6. Если ввести новое неизвестное p = u + v, то с помощью уравнения u − v = 1 можно через p выразить как u, так и v. Это поможет решить второе уравнение системы.

9.7. Из системы, полученной в результате замены, исключить свободные члены. Это приведет к уравнению, левую часть которого легко разложить на множители.

9.8. В качестве вспомогательного неизвестного удобно выбрать

9.9. Найти x и сделать проверку. Обратить внимание на то обстоятельство, что разность, стоящая в левой части данного уравнения, всегда положительна.

9.10. Второй путь удобнее, так как не приходится решать неравенство с параметром β, что значительно упрощает исследование.

9.14. Первое уравнение задает квадрат с центром в начале координат и с диагоналями, равными по длине 2, расположенными на координатных осях.

9.15. Ввести новые неизвестные: x + 1/x = u, у + 1/y = v.

9.16. В первое и второе уравнения входит разность уz. Ее-то и следует исключить из этих уравнений.

9.17. Сумму x4 + у4 в третьем уравнении удобно выразить через x² + у² и . В результате придем к уравнению относительно z.

9.18. Уравнение x + у = 1 − z позволит также упростить выражение, оказавшееся в скобках после того, как в третьем уравнении был вынесен за скобку множитель 1 − z.

9.19. Поскольку а, b и с — корни многочлена M(t), его можно записать в виде M(t) = (tа)(tb)(tс). Приравняв коэффициенты при одинаковых степенях t в двух выражениях для M(t), найдем uv и w (см. указание I, с. 138). Постарайтесь закончить решение, не прибегая к излишним выкладкам.

9.20. Умножить первое уравнение на ²z², а второе на x²уz². Будет ли нарушена при этом равносильность?

9.22. Умножить первое уравнение на z и вычесть из второго. Аналогично поступить со вторым и третьим уравнениями.

9.23. Возвести первое уравнение в квадрат и вычесть его из второго. Из полученного уравнения исключить z, воспользовавшись сначала третьим, а затем первым уравнениями. (!!)

Чтобы осуществить эту операцию, первое уравнение нужно предварительно умножить на у.

9.24. Почленно сложить каждые два уравнения: первое и второе, первое и третье, второе и третье. Из найденной системы получить уравнение относительно u = xyz. (!!)

Чтобы получить уравнение относительно u = xyz, достаточно перемножить полученные уравнения.

9.25. Каждое уравнение — квадратное относительно соответствующего xk. Решив все эти квадратные уравнения и сложив их решения, мы получим уравнение относительно s. Гарантировать равносильность при этом нельзя, но в условии задачи требуется найти только одно решение.

9.26. Если обозначить 7x − 11у = u, то отсюда можно выразить z через u и у. Таким образом, мы получим снова систему двух уравнений с двумя неизвестными. Из этой системы легко исключить у.

9.27. Из такой системы можно исключить у, одновременно избавляясь от иррациональностей: нужно возвести оба уравнения в квадрат и вычесть второе из первого.

9.28. Выразить  через x и сравнить получающиеся в результате выражения для z².

9.29. Полученная после возведения в квадрат система уравнений позволяет легко определить uv, а затем u и v. (!!)

При определении u и v и при последующем вычислении x и у нужно провести исследование. В результате будут использованы условия а > b > 0 и а + b < 1, а также введенные при возведении в квадрат ограничения x > 0, у > 0.

9.30. Наряду с решением x1, у1, z1 у системы обязательно есть решение −x1, −у1, z1. Таким образом, для единственности решения системы необходимо, чтобы эти два решения совпали. (!!)

Условие совпадения симметричных решений приведет к системе относительно а и b. Каждое из полученных значений а и b нужно проверить, так как мы воспользовались лишь необходимым условием единственности решения системы.

9.31. Подставив в первое и второе уравнения у = −x, мы получим два линейных уравнения относительно x³. Выразить из каждого уравнения x³ и приравнять эти два выражения. (!!)

Предыдущие рассуждения позволяют ограничить число рассматриваемых значений параметра а. Остается проверить, выполняются ли для каждого из оставшихся значений остальные условия задачи.

9.32. В качестве фиксированного значения b удобно выбрать b = 0. Мы придем к системе, из которой легко определить все возможные а. (!!)

Найденные значения а необходимо проверить.

9.33. Наряду с решением (x1, у1) система имеет решение (x1, −у1). Она может иметь единственное решение лишь при у = 0. Подставив это значение у, находим, что а = 0. Достаточно ли выполнение условия а = 0 для того, чтобы у системы было единственное решение?

9.34. После исключения  получится уравнение

x²/y² − 2x/y + у² + 2x − 2у = 3.

Его не следует преобразовывать в уравнение четвертой степени. Если в качестве вспомогательного неизвестного z взять некоторое выражение, содержащее x и у, то получится квадратное уравнение относительно z.

9.35. Все прямые у = а(x + 5) + 4 проходят через точку (−5; 4). Построение графика функции у = |6 − |x − 3| − |x + 1|| удобно начать с построения графика функции

у = 6 − |x − 3| − |x + 1|.

9.36. Уравнение равносильно системе

У первого уравнения есть корни

Остается выяснить, когда их два, а когда один, а также, при каких а для каждого из них удовлетворяется участвующее в системе неравенство.

9.37. Для упрощения симметрических многочленов применяют подстановку x + 1/x = t. Здесь возможна похожая подстановка. Наличие в числителе каждой дроби множителя x упрощает решение.

1 ... 41 42 43 44 45 46 47 48 49 ... 118
На этой странице вы можете бесплатно читать книгу Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин бесплатно.
Похожие на Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин книги

Оставить комментарий