Рейтинговые книги
Читем онлайн 5b. Электричество и магнетизм - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 22

На этом мы закончим довольно подробное изложение наших сегодняшних познаний о диэлектрических свойствах газов, жидкостей и твердых тел.

* Sānger, Steiger, Gachter, Helvetica Physica Acta, 5, 200 (1932).

Имеется перевод: Ч. Киттель, «Введение в физику твердого те­ла», М., 1962.— Прим. ред.

*По-английски сегнетоэлектричество называется ferroelectricity (ферроэлектричество); этот термин возник по аналогии с ферромагнетизмом: наличие спонтанного момента (электрического в сегнетоэлектриках, магнитного в ферромагнетиках), точки Кюри, гистерезиса и т. п. Однако физическая природа этих групп явлений совершенно различ­на.— Прим. ред.

Глава 12

ЭЛЕКТРОСТАТИЧЕСКИЕ АНАЛОГИИ

§1. Одинаковые уравнения— одинаковые решения

§2.Поток тепла; точечный источ­ник вблизи бесконечной плоской границы

§3. Натянутая мембрана

§4. Диффузия нейтронов; сфе­рически-симмет­ричный источник в однородной среде

§5. Безвихревое течение жидкости; обтекание шара

§6. Освещение; равномерное осве­щение плоскости

§7. «Фундаменталь­ное единство» природы

§ 1. Одинаковые уравнения — одинаковые решения

Вся информация о физическом мире, при­обретенная со времени зарождения научного прогресса, поистине огромна, и кажется почти невероятным, чтобы кто-то овладел заметной частью ее. Но фактически физик вполне может постичь общие свойства физического мира, не становясь специалистом в какой-то узкой об­ласти. Тому есть три причины. Первая. Суще­ствуют великие принципы, применимые к лю­бым явлениям, такие, как закон сохранения энергии и момента количества движения. Глу­бокое понимание этих принципов позволяет сразу постичь очень многие вещи. Вторая. Оказывается, что многие сложные явления, как, например, сжатие твердых тел, в основном обусловливаются электрическими и квантовомеханическими силами, так что, поняв основ­ные законы электричества и квантовой меха­ники, имеется возможность понять многие явления, возникающие в сложных условиях. Третья. Имеется замечательнейшее совпадение: Уравнения для самых разных физических усло­вий часто имеют в точности одинаковый вид. Использованные символы, конечно, могут быть разными — вместо одной буквы стоит другая, но математическая форма уравнений одна и та же. Это значит, что, изучив одну область, мы сразу получаем множество прямых и точных сведений о решениях уравнений для другой области.

Мы закончили электростатику и скоро пе­рейдем к изучению магнетизма и электродина­мики. Но прежде хотелось бы показать, что, изучив электростатику, мы одновременно узна­ли о многих других явлениях. Мы увидим, что уравнения электростатики фигурируют и в ряде других областей физики. Путем прямого переноса решений (одинаковые матема­тические уравнения должны, конечно, иметь одинаковые ре­шения) можно решать задачи из других областей с той же легкостью (или с таким же трудом), как и в электростатике. Уравнения электростатики, как мы знаем, такие:

(12.1)

(12.2}

(Мы пишем уравнения электростатики в присутствии диэлект­риков, чтобы учесть общий случай.) То же физическое содер­жание может быть выражено в другой математической форме:

(12.3)

(12.4)

И вот суть дела заключается в том, что существует множество физических проблем, для которых математические уравнения имеют точно такой же вид. Сюда входит потенциал (j), градиент которого, умноженный на скалярную функцию (x), имеет ди­вергенцию, равную другой скалярной функции (-r/e0).

Все, что нам известно из электростатики, можно немедленно перенести на другой объект, и наоборот. (Принцип, конечно, работает в обе стороны: если известны какие-то характеристики другого объекта, то можно использовать эти сведения в соот­ветствующей задаче по электростатике.) Мы рассмотрим ряд примеров из разных областей, когда имеются уравнения такого вида.

§ 2. Поток тепла; точечный источник вблизи бесконечной плоской границы

Ранее мы уже обсуждали (гл. 3, § 4) поток тепла. Вообразите кусок какого-то материала, необязательно однородного (в раз­ных местах может быть разное вещество), в котором темпера­тура меняется от точки к точке. Как следствие этих температур­ных изменений возникает поток тепла, который можно обозна­чить вектором h. Он представляет собой количество тепловой энергии, которое проходит в единицу времени через единичную площадку, перпендикулярную потоку. Дивергенция h есть скорость ухода тепла из данного места в расчете на единицу объема:

С·h = Скорость ухода тепла на единицу объема.

(Мы могли, конечно, записать уравнение в интегральном виде, как мы поступали в электродинамике с законом Гаусса, тогда оно выражало бы тот факт, что поток через поверхность равен скорости изменения тепловой энергии внутри материала. Мы не будем больше переводить уравнения из дифференциальной формы в интегральную и обратно, это делается точно так же, как в электростатике.)

Скорость, с которой тепло поглощается или рождается в разных местах, конечно, зависит от условий задачи. Предпо­ложим, например, что источник тепла находится внутри мате­риала (возможно, радиоактивный источник или сопротивление, через которое пропускают ток). Обозначим через s тепловую энергию, производимую этим источником в единице объема за 1 сек. Кроме того, могут возникнуть потери (или, наоборот, дополнительное рождение) тепловой энергии за счет перехода в другие виды внутренней энергии в данном объеме. Если и — внутренняя энергия в единице объема, то —du/dt будет тоже играть роль «источника» тепловой энергии. Итак, имеем

(12.5)

Мы не собираемся здесь обсуждать полное уравнение, ве­личины в котором изменяются со временем, потому что мы про­водим аналогию с электростатикой, где ничто не зависит от вре­мени. Мы рассмотрим только задачи с постоянным потоком тепла, в которых постоянные источники создают состояние равновесия. В таких случаях

(12.6)

Нужно иметь, конечно, еще одно уравнение, которое описы­вает, как поток течет в разных местах. Во многих веществах поток тепла примерно пропорционален скорости изменения температуры с положением: чем больше разность температур, тем больше поток тепла. Мы знаем, что вектор потока тепла пропорционален градиенту температуры. Константа пропор­циональности К, зависящая от свойств материала, называется коэффициентом теплопроводности

(12.7)

Если свойства материала меняются от точки к точке, то К=К (х, у, z) и есть функция положения. [Уравнение (12.7) не столь фундаментально, как (12.5), выражающее сохранение тепловой энергии, потому что оно зависит от характерных свойств вещества.] Подставляя теперь уравнение (12.7) в (12.6), получаем

(12.8)

что в точности совпадает по форме с (12.4). Задачи с постоянным потоком тепла и задачи электростатики одинаковы. Вектор потока тепла h соответствует Е, а тем­пература Т соответствует j.

Фиг. 12.1. Поток тепла в случае цилиндрической симметрии (а) и соответствующая задача из элек­тричества (б).

Мы уже отмечали, что точечный тепловой источник создает поле температур, меняющееся, как 1/r, и поток тепла, меняющийся, как 1/r2. Это есть не более чем простой перенос утвержде­ний электростатики, что точечный заряд дает потенциал, меняющийся, как 1/r, и электрическое поле, меня­ющееся, как 1/r2. Вообще мы можем решать статистические тепловые за­дачи с той же степенью легкости, как и задачи электростатики.

Рассмотрим простой пример. Пусть имеется цилиндр с ра­диусом а при температуре T1? поддерживающейся за счет гене­рации тепла в цилиндре. (Это может быть, скажем, проволока, по которой течет ток, или трубка с конденсацией пара внутри цилиндра.) Цилиндр покрыт концентрической обшивкой из изолирующего материала с теплопроводностью К. Пусть внеш­ний радиус изоляции равен b, а в наружном пространстве под­держивается температура T2(фиг. 12. 1, а). Нам нужно опреде­лить скорость потери тепла проволокой или паропроводом (все равно чем), проходящим по центру цилиндра. Пусть полное количество тепла, теряемого на длине трубы L, равно G, его-то мы и хотим найти.

Как надо решать такую задачу? У нас есть дифференциаль­ные уравнения, но поскольку они такие же, как в электроста­тике, то математическое решение их нам уже известно. Анало­гичная задача электростатики относится к проводнику радиу­сом а при потенциале j1, отделенном от другого проводника радиусом b при потенциале j2, с концентрическим слоем ди­электрика между ними (фиг. 12.1, б). Далее, поскольку поток тепла h соответствует электрическому полю Е, то наша искомая величина G соответствует потоку электрического поля от единичной длины (другими словами, электрическому заряду на единице длины, деленному на e0). Мы решали электростати­ческую задачу с помощью закона Гаусса. Нашу задачу о потоке тепла будем решать таким же способом.

1 ... 5 6 7 8 9 10 11 12 13 ... 22
На этой странице вы можете бесплатно читать книгу 5b. Электричество и магнетизм - Ричард Фейнман бесплатно.

Оставить комментарий