Шрифт:
Интервал:
Закладка:
Кодирование Хаффмана
Алгоритм кодирования Хаффмана очень похож на алгоритм сжатия Шеннона-Фано. Этот алгоритм был изобретен Девидом Хаффманом (David Huffman) в 1952 году ("A method for the Construction of Minimum-Redundancy Codes" ("Метод создания кодов с минимальной избыточностью")), и оказался еще более удачным, чем алгоритм Шеннона-Фано. Это обусловлено тем, что алгоритм Хаффмана математически гарантированно создает наименьший по размеру код для каждого из символов исходных данных.
Аналогично применению алгоритма Шеннона-Фано, нужно построить бинарное дерево, которое также будет префиксным деревом, где все данные хранятся в листьях. Но в отличие от алгоритма Шеннона-Фано, который является нисходящим, на этот раз построение будет выполняться снизу вверх. Вначале мы выполняем просмотр входных данных, подсчитывая количество появлений значений каждого байта, как это делалось и при использовании алгоритма Шеннона-Фано. Как только эта таблица частоты появления символов будет создана, можно приступить к построению дерева.
Будем считать эти пары символ-количество "пулом" узлов будущего дерева Хаффмана. Удалим из этого пула два узла с наименьшими значениями количества появлений. Присоединим их к новому родительскому узлу и установим значение счетчика родительского узла равным сумме счетчиков его двух дочерних узлов. Поместим родительский узел обратно в пул. Продолжим этот процесс удаления двух узлов и добавления вместо них одного родительского узла до тех пор, пока в пуле не останется только один узел. На этом этапе можно удалить из пула один узел. Он является корневым узлом дерева Хаффмана.
Описанный процесс не очень нагляден, поэтому создадим дерево Хаффмана для предложения "How much wood could a woodchuck chuck?" Мы уже вычислили количество появлений символов этого предложения и представили их в виде таблицы 11.1, поэтому теперь к ней потребуется применить описанный алгоритм с целью построения полного дерева Хаффмана. Выберем два узла с наименьшими значениями. Существует несколько узлов, из которых можно выбрать, но мы выберем узлы "m" и Для обоих этих узлов число появлений символов равно 1. Создадим родительский узел, значение счетчика которого равно 2, и присоединим к нему два выбранных узла в качестве дочерних. Поместим родительский узел обратно в пул. Повторим цикл с самого начала. На этот раз мы выбираем узлы "а" и "Д.", объединяем их в мини-дерево и помещаем родительский узел (значение счетчика которого снова равно 2) обратно в пул. Снова повторим цикл. На этот раз в нашем распоряжении имеется единственный узел, значение счетчика которого равно 1 (узел "Н") и три узла со значениями счетчиков, равными 2 (узел "к" и два родительских узла, которые были добавлены перед этим). Выберем узел "к", присоединим его к узлу "H" и снова добавим в пул родительский узел, значение счетчика которого равно 3. Затем выберем два родительских узла со значениями счетчиков, равными 2, присоединим их к новому родительскому узлу со значением счетчика, равным 4, и добавим этот родительский узел в пул. Несколько первых шагов построения дерева Хаффмана и результирующее дерево показаны на рис. 11.2.
Рисунок 11.2. Построение дерева Хоффмана
Используя это дерево точно так же, как и дерево, созданное для кодирования Шеннона-Фано, можно вычислить код для каждого из символов в исходном предложении и построить таблицу 11.5.
Таблица 11.5. Коды Хаффмана для символов примера предложения
Символ - Количество появлений
Пробел - 00
c - 100
o - 101
u - 010
d - 1100
h - 1101
w - 1110
k - 11110
H - 11111
a - 01100
l - 01101
m - 01110
? - 01111
Обратите внимание, что эта таблица кодов - не единственная возможная. Каждый раз, когда имеется три или больше узлов, из числа которых нужно выбрать два, существуют альтернативные варианты результирующего дерева и, следовательно, результирующих кодов. Но на практике все эти возможные варианты деревьев и кодов будут обеспечивать максимальное сжатие. Все они эквивалентны.
Теперь можно вычислить код для всего предложения. Он начинается с битов:
1111110111100001110010100...
и содержит всего 131 бит. Если бы исходное предложение было закодировано кодами ASCII, по одному байту на символ, оно содержало бы 286 битов. Таким образом, в данном случае коэффициент сжатия составляет приблизительно 54%.
Повторим снова, что, как и при применении алгоритма Шеннона-Фано, необходимо каким-то образом сжать дерево и включить его в состав сжатых данных.
Восстановление выполняется совершенно так же, как при использовании кодирования Шеннона-Фано: необходимо восстановить дерево из данных, хранящихся в сжатом потоке, и затем воспользоваться им для считывания сжатого потока битов.
Рассмотрим кодирование Хаффмана с высокоуровневой точки зрения. В ходе реализации каждого из методов сжатия, которые будут описаны в этой главе, мы создадим простую подпрограмму, которая принимает как входной, так и выходной поток, и сжимает все данные входного потока и помещает их в выходной поток.
Эта высокоуровневая подпрограмма TDHuffroanCompress, выполняющая кодирование Хаффмана, приведена в листинге 11.5.
Листинг 11.5. Высокоуровневая подпрограмма кодирования Хаффмана
procedure TDHuffmanCompress(aInStream, aOutStream : TStream);
var
HTree : THuffmanTree;
HCodes : PHuffmanCodes;
BitStrm : TtdOutputBitStream;
Signature : longint;
Size : longint;
begin
{вывести информацию заголовка (сигнатуру и размер несжатых данных)}
Signature := TDHuffHeader;
aOutStream.WriteBuffer(Signature, sizeof(longint));
Size := aInStream.Size;
aOutStream.WriteBuffer(Size, sizeof(longint));
{при отсутствии данных для сжатия необходимо выйти из подпрограммы}
if (Size = 0) then
Exit;
{подготовка}
HTree := nil;
HCodes := nil;
BitStrm := nil;
try
{создать сжатый поток битов}
BitStrm := TtdOutputBitStream.Create(aOutStream);
BitStrm.Name := 'Huffman compressed stream';
{распределить память под дерево Хаффмана}
HTree := THuffmanTree.Create;
{определить распределение символов во входном потоке и выполнить восходящее построение дерева Хаффмана}
HTree.CalcCharDistribution(aInStream);
{вывести дерево в поток битов для облегчения задачи программы восстановления данных}
HTree.SaveToBitStream (BitStrm);
{если корневой узел дерева Хаффмана является листом, входной поток состоит лишь из единственного повторяющегося символа, и следовательно, задача выполнена. В противном случае необходимо выполнить сжатие входного потока}
if not HTree.RootIsLeaf then begin
{распределить память под массив кодов}
New(HCodes);
{вычислить все коды}
HTree.CalcCodes(HCodes^ );
{сжать символы входного потока в поток битов}
DoHuffmanCompression(aInStream, BitStrm, HCodes^ );
end;
finally
BitStrm.Free;
HTree.Free;
if (HCodes <> nil) then
Dispose(HCodes);
end;
end;
Код содержит множество элементов, которые мы еще не рассматривали. Но мы вполне можем вначале рассмотреть работу программы в целом, а затем приступить к рассмотрению каждого отдельного этапа. Прежде всего, мы записываем в выходной поток небольшой заголовок, за которым следует значение длины входного потока. Впоследствии эта информация упростит задачу восстановления данных, гарантируя, что сжатый поток соответствует созданному нами. Затем мы создаем объект потока битов, содержащий выходной поток. Следующий шаг -создание экземпляра класса THuffmanTree. Этот класс, как вскоре будет показано, будет использоваться для создания дерева Хаффмана и содержит различные методы, помогающие в решении этой задачи. Один из методов этого нового объекта, вызываемых в первую очередь, метод CalcCharDistribution, определяет статистическую информацию распределения символов во входном потоке, а затем строит префиксное дерево Хаффмана.
После того, как дерево Хаффмана построено, можно вызвать метод SaveToBitStream, чтобы записать структуру дерева в выходной поток.
Затем мы выполняем обработку особого случая и небольшую оптимизацию. Если входной поток состоит всего лишь из нескольких повторений одного и того же символа, корневой узел дерева Хаффмана будет листом. Все префиксное дерево состоит всего из одного узла. В этом случае выходной поток битов будет содержать уже достаточно информации, чтобы программа восстановления могла восстановить исходный файл (мы уже записали в поток битов размер входного потока и единственный бит).
В противном случае входной поток должен содержать, по меньшей мере, два различных символа, и дерево Хаффмана имеет вид обычного дерева, а не единственного узла. В этом случае мы выполняем оптимизацию: вычисляем таблицу кодов для каждого символа, встречающегося во входном потоке. Это позволит сэкономить время на следующем этапе, когда будет выполняться реальное сжатие, поскольку нам не придется постоянно перемещаться по дереву для выполнения кодирования каждого символа. Массив HCodes - простой 256-элементный массив, содержащий коды всех символов и построенный посредством вызова метода CalcCodes объекта дерева Хаффмана.
И, наконец, когда все эти структуры данных определены, мы вызываем подпрограмму DoHuffmanCompression, выполняющую реальное сжатие данных. Код этой подпрограммы приведен в листинге 11.6.
- QT 4: программирование GUI на С++ - Жасмин Бланшет - Программирование
- C# для профессионалов. Том II - Симон Робинсон - Программирование
- Microsoft Visual C++ и MFC. Программирование для Windows 95 и Windows NT. Часть 2 - Александр Фролов - Программирование
- Crystal Programming. Введение на основе проекта в создание эффективных, безопасных и читаемых веб-приложений и приложений CLI - Джордж Дитрих - Программирование
- Советы по Delphi. Версия 1.4.3 от 1.1.2001 - Валентин Озеров - Программирование
- Программирование игр и головоломок - Жак Арсак - Программирование
- Язык программирования C#9 и платформа .NET5 - Эндрю Троелсен - Программирование
- Как спроектировать современный сайт - Чои Вин - Программирование
- Программирование на Python с нуля - Максим Кононенко - Программирование
- Каждому проекту своя методология - Алистэр Коуберн - Программирование