Шрифт:
Интервал:
Закладка:
if (FTable.Count = 0) then begin
if not Parse (ErrorPos, ErrorCode) then
rcError(tdeRegexParseError, 'MatchString', ErrorPos);
end;
{теперь необходимо выяснить, соответствует ли строка регулярному выражению (сопоставление пустых строк не выполняется)}
Result := 0;
if (S <> '') then
{если указанное регулярное выражение содержит начальный символ привязки, нужно проверить соответствие строки только начиная с первой позиции}
if FAnchorStart then begin
if rcMatchSubString(S, 1) then
Result := 1;
end
{в противном случае необходимо проверить соответствие строки в каждой из позиций и при первом же успешном сопоставлении выполнить возврат}
else begin
for i := 1 to length(S) do
if rcMatchSubString (S, i) then begin
Result := i;
Break;
end;
end;
end;
Если вы еще раз внимательно просмотрите листинг 10.15, то увидите, что код сопоставления уже обеспечивает применение конечного символа привязки. Код воспринимает конечное состояние в качестве признака соответствия регулярному выражению, если регулярное выражение не содержало конечного символа привязки, или же в случае достижения конца строки. При невыполнении любого из этих условий, конечное состояние будет игнорироваться..
Полный исходный код класса TtdRegexEngine можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDRegex.pas.
Резюме
В этой главе мы рассмотрели как детерминированные (DFA), так и недетерминированные (NFA) конечные автоматы. При этом мы исследовали несколько простых примеров DFA-автоматов.
Мы установили также, что при кодировании вручную конечные DFA-автоматы проще определить, понять и создать соответствующий код, в то время как конечные NFA-автоматы больше подходят для автоматических процессов. В заключение мы реализовали полную машину обработки регулярных выражений, которая выполняет синтаксический анализ и компиляцию регулярного выражения в конечный NFA-автомат (представленный таблицей переходов). Этот конечный NFA-автомат может использоваться для сопоставления строк.
Глава 11. Сжатие данных.
Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных. Заботу об этом - отображении списка клиентов, воспроизведении компакт-диска, печати письма - берет на себя программа, манипулирующая данными.
Представление данных
Рассмотрим двойственность природы данных: с одной стороны, содержимое информации, а с другой - ее физическое представление. В 1950 году Клод Шеннон (Claude Shannon) заложил основы теории информации, в том числе идею о том, что данные могут быть представлены определенным минимальным количеством битов. Эта величина получила название энтропии данных (термин был заимствован из термодинамики). Шеннон установил также, что обычно количество бит в физическом представлении данных превышает значение, определяемое их энтропией.
В качестве простого примера рассмотрим исследование понятия вероятности с помощью монеты. Можно было бы подбросить монету множество раз, построить большую таблицу результатов, а затем выполнить определенный статистический анализ этого большого набора данных с целью формулирования или доказательства какой-то теоремы. Для построения набора данных, результаты подбрасывания монеты можно было бы записывать несколькими различными способами: можно было бы записывать слова "орел" или "решка"; можно было бы записывать буквы "О" или "Р"; или же можно было бы записывать единственный бит (например "да" или "нет", в зависимости от того, на какую сторону падает монета). Согласно теории информации, результат каждого подбрасывания монеты можно закодировать единственным битом, поэтому последний приведенный вариант был бы наиболее эффективным с точки зрения объема памяти, необходимого для кодирования результатов. С этой точки зрения первый вариант является наиболее расточительным, поскольку для записи результата единственного подбрасывания монеты требовалось бы четыре или пять символов.
Однако посмотрим на это под другим углом: во всех приведенных примерах записи данных мы сохраняем одни и те же результаты - одну и ту же информацию - используя все меньший и меньший объем памяти. Другими словами, мы выполняем сжатие данных.
Сжатие данных
Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных. Заботу об этом - отображении списка клиентов, воспроизведении компакт-диска, печати письма - берет на себя программа, манипулирующая данными.
Представление данных
Рассмотрим двойственность природы данных: с одной стороны, содержимое информации, а с другой - ее физическое представление. В 1950 году Клод Шеннон (Claude Shannon) заложил основы теории информации, в том числе идею о том, что данные могут быть представлены определенным минимальным количеством битов. Эта величина получила название энтропии данных (термин был заимствован из термодинамики). Шеннон установил также, что обычно количество бит в физическом представлении данных превышает значение, определяемое их энтропией.
В качестве простого примера рассмотрим исследование понятия вероятности с помощью монеты. Можно было бы подбросить монету множество раз, построить большую таблицу результатов, а затем выполнить определенный статистический анализ этого большого набора данных с целью формулирования или доказательства какой-то теоремы. Для построения набора данных, результаты подбрасывания монеты можно было бы записывать несколькими различными способами: можно было бы записывать слова "орел" или "решка"; можно было бы записывать буквы "О" или "Р"; или же можно было бы записывать единственный бит (например "да" или "нет", в зависимости от того, на какую сторону падает монета). Согласно теории информации, результат каждого подбрасывания монеты можно закодировать единственным битом, поэтому последний приведенный вариант был бы наиболее эффективным с точки зрения объема памяти, необходимого для кодирования результатов. С этой точки зрения первый вариант является наиболее расточительным, поскольку для записи результата единственного подбрасывания монеты требовалось бы четыре или пять символов.
Однако посмотрим на это под другим углом: во всех приведенных примерах записи данных мы сохраняем одни и те же результаты - одну и ту же информацию - используя все меньший и меньший объем памяти. Другими словами, мы выполняем сжатие данных.
Сжатие данных
Сжатие данных (data compression) - это алгоритм эффективного кодирования информации, при котором она занимает меньший объем памяти, нежели ранее. Мы избавляемся от избыточности (redundancy), т.е. удаляем из физического представления данных те биты, которые в действительности не требуются, оставляя только то количество битов, которое необходимо для представления информации в соответствии со значением энтропии. Существует показатель эффективности сжатия данных: коэффициент сжатия (compression ratio). Он вычисляется путем вычитания из единицы частного от деления размера сжатых данных на размер исходных данных и обычно выражается в процентах. Например, если размер сжатых данных равен 1000 бит, а несжатых - 4000 бит, коэффициент сжатия составит 75%, т.е. мы избавились от трех четвертей исходного количества битов.
Конечно, сжатые данные могут быть записаны в форме недоступной для непосредственного считывания и понимания человеком. Люди нуждаются в определенной избыточности представления данных, способствующей их эффективному распознаванию и пониманию. Применительно к эксперименту с подбрасыванием монеты последовательности символов "О" и "Р" обладают большей наглядностью, чем 8-битовые значения байтов. (Возможно, что для большей наглядности пришлось бы разбить последовательности символов "О" и "Р" на группы, скажем, по 10 символов в каждой.) Иначе говоря, возможность выполнения сжатия данных бесполезна, если отсутствует возможность их последующего восстановления. Эту обратную операцию называют декодированием (decoding).
Типы сжатия
Существует два основных типа сжатия данных: с потерями (lossy) и без потерь (lossless). Сжатие без потерь проще для понимания. Это метод сжатия данных, когда при восстановлении данных возвращается точная копия исходных данных. Такой тип сжатия используется программой PKZIB"1: распаковка упакованного файла приводит к созданию файла, который имеет в точности то же содержимое, что и оригинал перед его сжатием. И напротив, сжатие с потерями не позволяет при восстановлении получить те же исходные данные. Это кажется недостатком, но для определенных типов данных, таких как данные изображений и звука, различие между восстановленными и исходными данными не имеет особого значения: наши зрение и слух не в состоянии уловить образовавшиеся различия. В общем случае алгоритмы сжатия с потерями обеспечивают более эффективное сжатие, чем алгоритмы сжатия без потерь (в противном случае их не стоило бы использовать вообще). Для примера можно сравнить предназначенный для хранения изображений формат с потерями JPEG с форматом без потерь GIF. Множество форматов потокового аудио и видео, используемых в Internet для загрузки мультимедиа-материалов, являются алгоритмами сжатия с потерями.
- QT 4: программирование GUI на С++ - Жасмин Бланшет - Программирование
- C# для профессионалов. Том II - Симон Робинсон - Программирование
- Microsoft Visual C++ и MFC. Программирование для Windows 95 и Windows NT. Часть 2 - Александр Фролов - Программирование
- Crystal Programming. Введение на основе проекта в создание эффективных, безопасных и читаемых веб-приложений и приложений CLI - Джордж Дитрих - Программирование
- Советы по Delphi. Версия 1.4.3 от 1.1.2001 - Валентин Озеров - Программирование
- Программирование игр и головоломок - Жак Арсак - Программирование
- Язык программирования C#9 и платформа .NET5 - Эндрю Троелсен - Программирование
- Как спроектировать современный сайт - Чои Вин - Программирование
- Программирование на Python с нуля - Максим Кононенко - Программирование
- Каждому проекту своя методология - Алистэр Коуберн - Программирование