Шрифт:
Интервал:
Закладка:
В предыдущей главе я рассматривал вопросы обучения и самораспространения в применении к машинам и, по крайней мере по аналогии, к живым системам. Здесь я повторю некоторые соображения, которые высказал в предисловии и которые намереваюсь использовать сейчас. Как уже отмечалось выше, эти два явления тесно связаны между собой: первое служит основой для приспособления индивидуума к окружению через опыт, что можно назвать онтогенетическим обучением, а второе, поскольку оно дает материал, с которым может работать изменчивость и естественный отбор, служит основой для обучения филогенетического. Как я уже указывал, млекопитающие, и в частности человек, приспособляются к своему окружению в значительной мере путем онтогенетического обучения, а у птиц, с их весьма разнообразными типами поведения, которые не приобретаются при жизни особи, гораздо большее значение имеет филогенетическое обучение.
Мы видели важность нелинейных обратных связей в возникновении обоих процессов. Настоящая глава посвящена изучению одной конкретной самоорганизующейся системы, в которой нелинейные явления играют большую роль. Здесь описывается то, что происходит, по моему мнению, при самоорганизации электроэнцефалограмм, или электрических волн головного мозга.
Прежде чем обсуждать эту тему по существу, я должен сказать несколько слов о том, что такое волны головного мозга и как их строение можно подвергнуть точному математическому исследованию. Уже много лет было известно, что деятельность нервной системы сопровождается определенными электрическими потенциалами. Первые наблюдения в этой области восходят к началу прошлого столетия и были сделаны Вольтой и Гальвани на нервно-мышечных препаратах лягушачьей [c.268] ноги. Так родилась наука электрофизиология. Однако до конца первой четверти нашего столетия указанная наука развивалась довольно медленно.
Стоит подумать, почему развитие этой ветви физиологии было таким медленным. Для исследования физиологических электрических потенциалов сперва применялись гальванометры. Они имели два недостатка. Во-первых, вся энергия, необходимая для перемещения катушки или стрелки прибора, поступала из самого нерва и была очень мала. Второе затруднение заключалось в том, что в тогдашних гальванометрах подвижные части имели довольно значительную инерцию и для приведения стрелки в строго определенное положение необходима была значительная устанавливающая сила, т. е. гальванометр неизбежно был не только регистрирующим, но и искажающим прибором. Самым лучшим из прежних физиологических гальванометров был струнный гальванометр Эйнтговена, в котором подвижные части сведены к одной нити. Как ни превосходен был этот прибор по тому времени, он не был достаточно хорош, чтобы регистрировать малые электрические потенциалы без больших искажений.
Таким образом, электрофизиологии пришлось дожидаться появления новой техники. То была электронная техника в двух формах. Одна из них восходит к открытию Эдисоном некоторых эффектов проводимости газов, откуда пошло применение электронной лампы для усиления. В результате стало возможным преобразовывать достаточно верно слабые напряжения в сильные и тем самым перемещать оконечные элементы регистрирующего прибора при помощи энергии, не исходящей от нерва, но управляемой им.
Второе изобретение также связано с электрическим током в вакууме и называется катоднолучевым осциллографом. Благодаря осциллографу стало возможно применять в качестве подвижной части прибора гораздо более легкий якорь, нежели в любом предыдущем гальванометре, а именно поток электронов. С помощью двух этих устройств, взятых порознь или вместе, физиологи нашего столетия сумели точно проследить изменение во времени малых напряжений, что было совершенно вне возможностей точных приборов XIX века.
Подобными методами смогли получить точные [c.269] записи изменения во времени весьма малых потенциалов между двумя электродами, помещенными на кожу головы или введенными в мозг. Хотя эти потенциалы наблюдались и в XIX веке, возможность получения новых точных записей возбудила 20—30 лет тому назад большие надежды у физиологов. Ведущими в использовании таких приборов для непосредственного изучения деятельности мозга были Бергер в Германии, Эдриан и Мэттьюс в Англии и Джаспер, Дэйвис и супруги Гиббсы в Соединенных Штатах.
Надо признать, что последующее развитие электроэнцефалографии не оправдало розовых надежд, которые питали первые исследователи в этой области. Полученные ими данные записывались чернильным самописцем. Это чрезвычайно сложные и неправильные кривые; и хотя можно было различить некоторые преобладающие частоты, как, например, альфа-ритм с частотой около 10 колебаний в секунду, записи чернилами были мало пригодны для дальнейшей математической обработки. В результате электроэнцефалография стала больше искусством, чем наукой, и зависела от способности тренированного наблюдателя распознавать определенные свойства чернильной кривой на основании большого опыта. Это вызывало весьма серьезный упрек, что истолкование электроэнцефалограмм делается в значительной мере субъективным.
В конце 20-х — начале 30-х годов я заинтересовался гармоническим анализом непрерывных процессов. Хотя физики ранее уже рассматривали такие процессы, математическая теория гармонического анализа почти вся ограничивалась изучением либо периодических процессов, либо процессов, стремящихся в некотором смысле к нулю с возрастанием времени в положительном или отрицательном направлении. Моя работа была первой попыткой поставить гармонический анализ непрерывных процессов на твердую математическую основу. При этом я нашел, что главным здесь является понятие автокорреляции, которое уже применял Дж. И. Тэйлор (ныне сэр Джеффри Тэйлор) при изучении турбулентностей[189]. [c.270]
Автокорреляция для функции времени f(t) представляет собой временно́е среднее от произведения f(t+τ) на f(t). Удобно вести комплексные функции времени, если даже в реальных случаях мы рассматриваем действительные функции. Тогда автокорреляция становится равной среднему произведению f(t+τ) на величину, сопряженную с f(t). Работаем ли мы с действительными или с комплексными функциями, спектр мощности функции f(t) равен преобразованию Фурье от ее автокорреляции.
Я уже говорил о непригодности чернильных записей для дальнейшей математической обработки. Прежде чем ожидать многого от идеи автокорреляции, необходимо было заменить чернильные записи какими-либо другими, более пригодными.
Одним из лучших способов фиксации малых флюктуирующих напряжений для дальнейшей обработки — применение магнитной ленты. Она позволяет сохранять флюктуирующее электрическое напряжение в виде постоянной записи, которую можно затем использовать когда угодно. Один из таких приборов был придуман около десяти лет тому назад в научно-исследовательской лаборатории электроники Массачусетсского технологического института под руководством проф. Уолтера А. Розенблита и д-ра Мэри А. Б. Бразье[190].
В этом приборе применяется запись на магнитную ленту с частотной модуляцией. Дело в том, что считывание всегда связано с некоторым стиранием магнитной ленты. При записи с амплитудной модуляцией стирание приводит к изменению хранимого сообщения, и при последовательных считываниях ленты мы по существу имеем дело с меняющимся сообщением.
При частотной модуляции также происходит некоторое стирание, но приборы, посредством которых мы читаем ленту, сравнительно нечувствительны к амплитуде и считывают только частоту. Пока лента не сотрется настолько, что станет совершенно неразборчива, частичное стирание ленты не искажает значительно сообщения, которое она хранит. Поэтому ленту можно [c.271] читать много раз почти с такой же точностью, как и при первом считывании.
Как следует из самого понятия автокорреляции, нам понадобится механизм, задерживающий считывание ленты на регулируемый интервал времени. Если отрывок записи длительности А пропустить через прибор с двумя последовательными считывающими головками, то образуются два одинаковых, но сдвинутых во времени сигнала. Временной сдвиг зависит от расстояния между считывающими головками и от скорости подачи ленты, и его можно менять по нашему желанию. Мы можем обозначить один сигнал через f(t), а другой — через f(t+τ), где τ — временной сдвиг. Произведение этих сигналов можно, например, получить при помощи квадратических детекторов и линейных смесителей, используя тождество
- Наука и общество - Норберт Винер - Прочая научная литература
- «Дни науки» факультета управления, экономики и права КНИТУ. В 3 т. Том 3 - Коллектив авторов - Прочая научная литература
- «Дни науки» факультета управления, экономики и права КНИТУ. В 2 т. Том 1 - Коллектив авторов - Прочая научная литература
- Кибернетика стучится в школу - Геннадий Воробьев - Прочая научная литература
- Коннектом. Как мозг делает нас тем, что мы есть - Себастьян Сеунг - Прочая научная литература
- Аналитика: методология, технология и организация информационно-аналитической работы - Юрий Курносов - Прочая научная литература
- Динозавры России. Прошлое, настоящее, будущее - Антон Евгеньевич Нелихов - Биология / История / Прочая научная литература
- 7 стратегий для достижения богатства и счастья - Рон Джим - Прочая научная литература
- Петербургская социология сегодня – 2015. Сборник научных трудов Социологического института РАН - Сборник статей - Прочая научная литература
- Радость науки. Важнейшие основы рационального мышления - Джим Аль-Халили - Прочая научная литература / Самосовершенствование