Шрифт:
Интервал:
Закладка:
На этом расстанемся с обучающимися машинами. Теперь следует сказать кое-что о самораспространяющихся машинах. Здесь важны оба слова: «машина» и «самораспространяющаяся». Машина — не только материальная форма, но и средство для достижения определенных целей. И самораспространение — не просто создание осязаемой копии, но и создание копии, способной к тем же самым функциям.
Здесь мыслимы два разных подхода. Один из них, чисто комбинаторный, связан с вопросом: может ли машина иметь достаточно много частей и достаточно [c.263] сложную структуру, чтобы самовоспроизведение могло быть в числе ее функций? На этот вопрос дал положительный ответ покойный Джон фон Нейман. Другой вопрос касается действительной рабочей процедуры для построения самовоспроизводящихся машин. Здесь я ограничусь одним классом машин, который, хотя и не охватывает всех машин, отличается большой общностью. Я имею в виду нелинейные преобразователи.
Названные машины представляют собой устройства, где входным сигналом служит одна функция времени, выходным — другая. Выходной сигнал полностью определяется прошлым входного сигнала; но, вообще говоря, при сложении входных сигналов соответствующие выходные сигналы не складываются. Такие устройства называются преобразователями. Общим свойством всех преобразователей, линейных или нелинейных, является инвариантность относительно сдвига во времени. Если машина выполняет некоторую функцию, то при сдвиге входного сигнала назад во времени выходной сигнал сдвигается назад на такой же интервал.
Наша теория самовоспроизводящихся машин основана на некотором каноническом представлении нелинейных преобразователей. Понятия импеданса и адмиттанса, столь необходимые в теории линейных систем, здесь не вполне пригодны. Нам придется сослаться на новые методы получения такого представления, разработанные отчасти мною[187] и отчасти профессором Деннисом Габором[188] из Лондонского университета.
Хотя методы профессора Габора и мои собственные приводят к построению нелинейных преобразователей, они линейны в том смысле, что выходной сигнал нелинейного преобразователя представляется в них как сумма выходных сигналов комплекта нелинейных преобразователей, на которые подается один и тот же входной сигнал. Указанные выходные сигналы складываются с переменными линейными коэффициентами. Это [c.264] позволяет нам при расчете и задании нелинейного преобразователя применить теорию линейных разложений. В частности, можно разыскивать коэффициенты составляющих элементов методом наименьших квадратов. Если сюда еще добавить метод статистического усреднения по множеству всех входных сигналов, которые могут поступать в наше устройство, то получится, по существу, один из разделов теории ортогональных разложений. Такую статистическую основу для теории нелинейных преобразователей можно получить фактическим изучением прошлых статистик входных сигналов, используемых в каждом частном случае.
Таковы, в общих чертах, методы Габора. Мои методы по существу аналогичны, но статистическая основа моей работы несколько иная.
Хорошо известно, что электрический ток не является непрерывным, а представляет собой поток электронов, подверженный статистическим отклонениям. Эти статистические флюктуации можно описать достаточно хорошо с помощью теории броунова движения или аналогичной теории дробового эффекта (лампового шума), о которых я собираюсь говорить в следующей главе. Во всяком случае, можно создать прибор, производящий стандартный дробовой шум с весьма специфическим статистическим распределением, и такой прибор выпускается промышленностью. Заметим, что ламповый шум является в некотором роде универсальным входным сигналом, поскольку его флюктуации, если брать их за достаточно долгое время, будут рано или поздно приближаться к любой данной кривой. Для лампового шума существует весьма простая теория интегрирования и усреднения.
С помощью статистик лампового шума легко построить замкнутое множество нормальных и ортогональных нелинейных операций. Если входные сигналы, подвергаемые этим операциям, имеют статистическое распределение, присущее ламповому шуму, то среднее произведение выходных сигналов двух составляющих элементов нашего нелинейного преобразователя, взятое по статистическому распределению лампового шума, будет равно нулю. Кроме того, средний квадрат выходного сигнала каждого устройства можно нормировать к единице. [c.265]
Тогда для разложения нелинейного преобразователя общего вида по этим составляющим элементам можно применить известную теорию ортонормальных функций.
Конкретно, наши устройства дают выходные сигналы, представляющие собой произведения многочленов Эрмита от коэффициентов Лагерра для прошлого отрезка входного сигнала. Это подробно изложено в моих «Нелинейных задачах в теории случайных процессов».
Конечно, трудно найти среднее непосредственно по множеству возможных входных сигналов. Эта трудная задача становится разрешимой только потому, что дробовые входные сигналы обладают свойством, которое называется метрической транзитивностью или эргодичностью. Любая интегрируемая функция от параметра распределения дробовых входных сигналов имеет почти во всех случаях среднее по времени, равное среднему по множеству. Вследствие этого мы можем взять два прибора, на которые поступает один и тот же дробовой шум, и найти среднее их произведение по всему множеству возможных входных сигналов путем перемножения их выходных сигналов и усреднения полученного произведения по времени. Для всех этих процессов необходимы лишь операции сложения напряжений, перемножения напряжений и усреднения по времени, для которых имеются соответствующие устройства. Фактически для методики Габора требуются те же устройства, что и для моей методики. Один из его учеников изобрел весьма эффективный и недорогой перемножитель, основанный на пьезоэлектрическом эффекте в кристалле, находящемся в поле двух магнитных катушек.
Итак, любой неизвестный нелинейный преобразователь мы можем имитировать суммой линейных членов, обладающих каждый заданными характеристиками и регулируемым коэффициентом. Коэффициент можно найти как среднее произведение выходных сигналов неизвестного преобразователя и соответствующего известного преобразователя, когда их входы подключены к одному и тому же генератору дробового шума. Более того, вместо того, чтобы считывать результат на шкале прибора и переносить его вручную в соответствующий преобразователь, моделируя устройство по частям, [c.266] можно без большого труда осуществить автоматический перенос коэффициентов в цепи обратной связи. В итоге нам удалось создать белый ящик, потенциально способный приобрести характеристики любого нелинейного преобразователя, и затем сделать его подобным данному преобразователю — черному ящику, подав на входы приборов одну и ту же случайную функцию и соединив их выходы таким образом, чтобы получить надлежащую комбинацию без всякого вмешательства с нашей стороны.
Я спрашиваю, будет ли это философски очень разниться от того, что происходит в организме, когда ген действует как шаблон, формирующий другие молекулы того же гена из неопределенной смеси аминокислот и нуклеиновых кислот, или когда вирус формирует другие подобные себе молекулы того же вируса из тканей и соков организма-хозяина. Я совсем не утверждаю, что процессы одинаковы в деталях, но утверждаю, что философски они представляют собой весьма сходные явления. [c.267]
Глава Х. Мозговые волны и самоорганизующиеся системы
В предыдущей главе я рассматривал вопросы обучения и самораспространения в применении к машинам и, по крайней мере по аналогии, к живым системам. Здесь я повторю некоторые соображения, которые высказал в предисловии и которые намереваюсь использовать сейчас. Как уже отмечалось выше, эти два явления тесно связаны между собой: первое служит основой для приспособления индивидуума к окружению через опыт, что можно назвать онтогенетическим обучением, а второе, поскольку оно дает материал, с которым может работать изменчивость и естественный отбор, служит основой для обучения филогенетического. Как я уже указывал, млекопитающие, и в частности человек, приспособляются к своему окружению в значительной мере путем онтогенетического обучения, а у птиц, с их весьма разнообразными типами поведения, которые не приобретаются при жизни особи, гораздо большее значение имеет филогенетическое обучение.
Мы видели важность нелинейных обратных связей в возникновении обоих процессов. Настоящая глава посвящена изучению одной конкретной самоорганизующейся системы, в которой нелинейные явления играют большую роль. Здесь описывается то, что происходит, по моему мнению, при самоорганизации электроэнцефалограмм, или электрических волн головного мозга.
- Наука и общество - Норберт Винер - Прочая научная литература
- «Дни науки» факультета управления, экономики и права КНИТУ. В 3 т. Том 3 - Коллектив авторов - Прочая научная литература
- «Дни науки» факультета управления, экономики и права КНИТУ. В 2 т. Том 1 - Коллектив авторов - Прочая научная литература
- Кибернетика стучится в школу - Геннадий Воробьев - Прочая научная литература
- Коннектом. Как мозг делает нас тем, что мы есть - Себастьян Сеунг - Прочая научная литература
- Аналитика: методология, технология и организация информационно-аналитической работы - Юрий Курносов - Прочая научная литература
- Динозавры России. Прошлое, настоящее, будущее - Антон Евгеньевич Нелихов - Биология / История / Прочая научная литература
- 7 стратегий для достижения богатства и счастья - Рон Джим - Прочая научная литература
- Петербургская социология сегодня – 2015. Сборник научных трудов Социологического института РАН - Сборник статей - Прочая научная литература
- Радость науки. Важнейшие основы рационального мышления - Джим Аль-Халили - Прочая научная литература / Самосовершенствование