Рейтинговые книги
Читем онлайн 5b. Электричество и магнетизм - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 22

Как показано на фиг. 10.8, диэлектрик всегда стремится из области слабого поля в область, где поле сильнее. В дей­ствительности можно показать, что сила, действующая на малые объекты, пропорциональна градиенту квадрата элект­рического поля. Почему она зависит от квадрата поля? Потому что индуцированные поляризационные заряды пропорциональ­ны полям, а для данных зарядов силы пропорциональны полю. Однако, как мы уже указывали, результирующая сила возни­кает, только если квадрат поля меняется от точки к точке. Следовательно, сила пропорциональна градиенту квадрата поля. Константа пропорциональности включает помимо всего прочего еще диэлектрическую проницаемость данного тела и зависит также от размеров и формы тела.

Фиг. 10.8, На диэлектрик в неоднородном поле действует сила, направленная в сторону областей с большей напряжен­ностью поля.

Фиг. 10.9. Сила, действующая на диэлектрик в пло­ском конденсаторе, может быть вычислена с помощью закона сохранения энергии.

Есть еще одна близкая задача, в которой сила, действующая на диэлектрик, может быть найдена точно. Если мы возьмем плоский конденсатор, в котором плитка диэлектрика задвинута лишь частично (фиг. 10.9), то возникнет сила, вдвигающая диэлектрик внутрь. Провести детальное исследование силы очень трудно; оно связано с неоднородностями поля вблизи концов диэлектрика и пластин. Однако если мы не интересуемся деталями, а просто используем закон сохранения энергии, то силу легко вычислить. Мы можем определить силу с помощью ранее выведенной формулы. Уравнение (10.28) эквивалентно

(10.30)

Нам осталось только найти, как меняется емкость в зависи­мости от положения плитки диэлектрика.

Пусть полная длина пластин есть L, ширина их равна W, расстояние между пластинами и толщина диэлектрика равна d, а расстояние, на которое вдвинут диэлектрик, есть х. Емкость есть отношение полного свободного заряда на пластинах к разности потенциалов между пластинами. Выше мы видели, что при данном потенциале V поверхностная плотность сво­бодных зарядов равна

xe0V/d. Следовательно, полный заряд пластин равен

откуда мы находим емкость

(10.31)

С помощью (10.30) получаем

(10.32)

Но пользы от этого выражения не очень много, разве только вам понадобится определить силу именно в таких условиях. Мы хотели лишь показать, что можно подчас избежать страш­ных осложнений при определении сил, действующих на ди­электрики, если пользоваться энергией, как это было в настоя­щем случае.

В нашем изложении теории диэлектриков мы имели дело только с электрическими явлениями, принимая как факт, что поляризация вещества пропорциональна электрическому полю. Почему возникает такая пропорциональность — вопрос, пред­ставляющий, пожалуй, еще больший интерес для физики. Стоит нам понять механизм возникновения диэлектрической проницаемости с атомной точки зрения, как мы сможем исполь­зовать измерения диэлектрической проницаемости в изменяю­щихся условиях для получения подробных сведений о строении атомов и молекул. Эти вопросы будут частично изложены в следующей главе.

Глава 11

ВНУТРЕННЕЕ УСТРОЙСТВО ДИЭЛЕКТРИКОВ

§1. Молекулярные диполи

§2. Электронная поляризация

§3. Полярные молекулы; ориентационная поляризация

§4. Электрические поля в пустотах диэлектрика

§5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти

§6. Твердые диэлектрики

§7. Сегнетоэлектричество; титанат бария

Повторить: гл. 3 (вып. 3) «Как возникает показатель преломления», гл. 40 (вып. 4) «Принципы статистической механики »

§ 1. Молекулярные диполи

В этой главе мы поговорим о том, почему вещество бывает диэлектриком. В предыдущей главе мы указывали, что свойства электри­ческих систем с диэлектриками можно было бы понять, предположив, что электрическое поле, действуя на диэлектрик, индуцирует в атомах дипольный момент. Именно, если элект­рическое поле Е индуцирует средний диполь­ный момент в единице объема Р, то диэлектри­ческая проницаемость х дается выражением

(11.1)

О применениях этого выражения мы уже говорили; сейчас же нам нужно обсудить меха­низм возникновения поляризации внутри ма­териала под действием электрического поля. Начнем с самого простого примера — поляри­зации газов. Но даже в газах возникают слож­ности: существуют два типа газов. Молекулы некоторых газов, например кислорода, в каж­дой молекуле которого имеются два симметрич­ных атома, лишены собственного дипольного момента. Зато молекулы других газов, вроде водяного пара (у которого атомы водорода и кислорода образуют несимметричную молекулу), обладают постоянным электрическим дипольным моментом. Как мы отмечали в гл. 6 и 7, в молекуле водяного пара атомы водорода в среднем имеют положительный заряд, а атом кислорода — отрицательный. Поскольку цент­ры тяжести положительного и отрицательного зарядов не совпадают, то распределение всего заряда в молекуле обладает дипольным моментом.

Фиг. 11.1. Молекула кислорода с нулевым дипольным моментом (а) и моле­кула воды с постоянным дипольным моментом р0 (б).

Такая молекула называется полярной молекулой. А у кисло­рода вследствие симмет­рии молекулы центр тяжести и положитель­ных, и отрицательных зарядов один и тот же, так что это неполярная молекула. Она, правда,

может стать диполем, если ее поместить в электрическое поле. Формы этих двух типов молекул нарисованы на фиг. 11.1.

§ 2. Электронная поляризация

Займемся сначала поляризацией неполярных молекул. Начнем с простейшего случая одноатомного газа (например, гелия). Когда атом такого газа находится в электрическом поле, электроны его тянутся в одну сторону, а ядро — в другую, как показано на рис. 10.4 (стр. 200). Хотя атомы имеют очень боль­шую жесткость по отношению к электрическим силам, которые мы можем приложить к ним на опыте, центры зарядов чуть-чуть смещаются относительно друг друга и индуцируется дипольный момент. В слабых полях величина смещения, а следовательно, и дипольного момента пропорциональна напряженности элект­рического поля. Смещение электронного распределения, ко­торое приводит к этому типу индуцированного дипольного момента, называется электронной поляризацией.

Мы уже обсуждали воздействие электрического поля на атом в гл. 31 (вып. 3), когда занимались теорией показателя преломления. Подумав немного, вы сообразите, что теперь нужно сделать то же, что и тогда. Только теперь нас заботят поля, не меняющиеся со временем, тогда как показатель пре­ломления был связан с полями, зависящими от времени.

В гл. 31 (вып. 3) мы предполагали, что центр электронного заряда атома, помещенного в осциллирующее электрическое поле, подчиняется уравнению

(11.2)

Первый член — это произведение массы электрона на его ускорение, а второй — возвращающая сила; справа стоит сила, действующая со стороны внешнего электрического поля. Если электрическое поле меняется с частотой w, то уравнение (11.2)

допускает решение

(11.3)

имеющее резонанс при w=w0. Когда раньше мы нашли это решение, то интерпретировали w0 как частоту, при которой атом поглощает свет (она лежит либо в оптической, либо в ультрафиолетовой области, в зависимости от атома). Для нашей цели, однако, достаточно случая постоянных полей, т.е. w=0; поэтому мы можем пренебречь членом с ускорением в (11.2) и получаем смещение

(11.4)

Отсюда находим дипольный момент р одного атома

(11.5)

В таком подходе дипольный момент р действительно пропор­ционален электрическому полю. Обычно пишут

(11.6)

(Снова e0 вошло по историческим причинам.) Постоянная a называется поляризуемостью атома и имеет размерность L3. Это мера того, насколько легко индуцировать электрическим полем дипольный момент у атома. Сравнивая

(11.5) и (11.6), получаем, что в нашей простой теории

(11.7)

Если в единице объема содержится N атомов, то поляри­зация (дипольный момент единицы объема) дается формулой

(11.8)

1 2 3 4 5 6 7 8 9 10 ... 22
На этой странице вы можете бесплатно читать книгу 5b. Электричество и магнетизм - Ричард Фейнман бесплатно.

Оставить комментарий