Рейтинговые книги
Читем онлайн Новый ум короля: О компьютерах, мышлении и законах физики - Роджер Пенроуз

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 31 32 33 34 35 36 37 38 39 ... 167

Идея формулировки понятий в терминах множеств послужила основой для процедуры, предложенной в 1884 году влиятельным немецким логиком Готтлибом Фреге, которая позволяла определять числа через множества. К примеру, что мы понимаем под числом 3? Мы знаем, в чем заключается «тройственность», но что есть число 3 само по себе? Очевидно, что «тройственность» есть свойство наборов объектов, т. е. свойство множеств: некоторое множество обладает данным свойством тогда и только тогда, когда это множество состоит из трех членов. Этим свойством характеризуется, скажем, тройка призеров-медалистов некоторой Олимпиады. Равно как и набор шин к трехколесному велосипеду, или листья на одном стебельке обычного клевера, или множество всех решений уравнения x36х2 + 11x6 = 0. Как же можно тогда определить по Фреге само число 3? Согласно Фреге, 3 — это множество множеств, а именно, всех множеств, имеющих свойство «тройственности»[69]. Таким образом, множество содержит три члена тогда и только тогда, когда оно принадлежит множеству 3 по Фреге.

Может показаться, что мы попадаем в замкнутый круг, но в действительности это совсем не так. Мы можем определить числа в общем случае как совокупности всевозможных эквивалентных множеств, где говоря «эквивалентные», мы понимаем «состоящие из элементов, которые могут быть попарно сопоставлены друг другу» (или, в более привычной терминологии, «имеющих одинаковое число элементов»). Тогда число 3 будет одной из этих совокупностей множеств, которая содержит в себе в качестве члена множество, состоящее, скажем, из яблока, апельсина и груши. Обратите внимание, что это принципиально отличается от определения «3», данного Черчем (см. гл.2 «Лямбда-исчисление Черча»). Существуют также и другие определения, причем более популярные в наши дни.

Вернемся теперь к парадоксу Рассела. В чем он заключается? В нем рассматривается множество R, определенное следующим образом:

R есть множество множеств, которые не являются членами самих себя.

Таким образом, R есть набор множеств X, отвечающих следующему условию: среди членов множества X не должно быть самого X.

Не является ли абсурдным предполагать, что множество в действительности может быть членом самого себя? Ничуть. Рассмотрим, к примеру, множество I, состоящее из бесконечных множеств (множеств с бесконечным числом членов). С очевидностью, существует бесконечное число различных бесконечных множеств, и само множество I, таким образом, является бесконечным. И, таким образом, оно, действительно, принадлежит самому себе! Но как же, в таком случае, рассуждения Рассела дают нам парадоксальное утверждение? Давайте спросим: является ли множество Рассела R членом самого себя или нет? Если нет, то оно должно принадлежать себе, ибо R состоит как раз из таких множеств, которые не являются членами самих себя. То есть, в конечном счете, R принадлежит R — противоречие! С другой стороны, если R есть член самого себя, то, поскольку «самое себя» — это R, оно в то же время принадлежит множеству, члены которого, по определению, не могут быть составляющими самих себя, т. е. все-таки не принадлежит самому себе — и вновь противоречие![70]

Этот парадоксальный вывод не был праздной игрой ума: Рассел использовал — хотя и в крайней форме — тот же тип весьма общих теоретико-множественных методов, которые математики начинали использовать в то время для своих доказательств. Становилось очевидным, что казавшаяся незыблемой почва ускользает из-под ног, и поэтому необходимо было как можно точнее определить, какие рассуждения считать допустимыми. Ясно было, что такие рассуждения должны быть свободны от внутренних противоречий, и что утверждения, которые будут выводиться с их помощью как следствия из априори верных посылок, должны быть также верными. Рассел, совместно со своим коллегой Альфредом Нортом Уайтхедом, взялся за развитие такой полностью формализованной системы аксиом и правил вывода, на язык которой стало бы возможным перевести все виды корректных математических рассуждений. Все правила подвергались тщательному отбору, дабы избежать «ложных» путей рассуждений, могущих привести к парадоксам, подобным упомянутому выше. Однако схема, появившаяся на свет в результате этих усилий, была очень громоздка и оказалась весьма ограниченной по диапазону различных типов математических рассуждений, которые она охватывала. Великий математик Давид Гильберт (которого мы впервые встретили в главе 2) задался целью создать более практичную и универсальную систему. В нее должны были войти все типы математических рассуждений из всех областей математики. Более того, Гильберт стремился сделать возможным строгое доказательство отсутствия противоречий в своей схеме. Тогда математика раз и навсегда смогла бы встать на прочную и неколебимую основу.

Однако надежды Гильберта и его последователей были перечеркнуты, когда в 1931 году блестящий австрийский логик математики Курт Гедель выдвинул поразительную теорему, которая до основания разрушала программу Гильберта. Гедель показал, что любая подобная точная («формальная») система аксиом и правил вывода, если только она достаточна широка, чтобы содержать в себе описания простых арифметических теорем (как, например, «последняя теорема Ферма», рассмотренная в главе 2), и если она свободна от противоречий — то такая система должна включать утверждения, которые не являются ни доказуемыми, ни недоказуемыми в рамках формализма данной системы. Истинность таких «неразрешимых» утверждений, следовательно, не может быть выяснена с помощью методов, допускаемых самой системой. Более того, Гедель смог показать, что даже утверждение о непротиворечивости системы аксиом, будучи переведенным в форму соответствующей теоремы, само по себе является «неразрешимым». Для нас будет очень важным понять природу этой неразрешимости. Тогда мы увидим, почему выводы Геделя опровергали самое основание программы Гильберта. Мы также увидим, каким образом они дают нам возможность, воспользовавшись интуицией, выходить за пределы любой рассматриваемой формализованной математической системы. Это понимание будет решающим для того, чтобы, в свою очередь, лучше понять обсуждаемое далее.

Формальные математические системы

Необходимо будет несколько уточнить, что мы понимаем под «формальными математическими системами аксиом и правил вывода». Мы должны предположить наличие некоторого алфавита символов, через которые будут записываться математические выражения. Эти символы в обязательном порядке должны быть адекватны для записи натуральных чисел с тем, чтобы в нашу систему могла быть включена «арифметика». По желанию, мы можем использовать общепринятую арабскую запись 0, 1, 2, 3…, 9, 10, 11, 12… хотя при этом конкретные выражения для правил вывода становятся несколько более сложными, чем требуется. Гораздо более простые выражения получаются, скажем, при использовании записи вида 0, 01, 011, 0111, 01111… для обозначения последовательности натуральных чисел (или, в качестве компромисса, мы могли бы использовать двоичную запись). Однако, поскольку это могло бы стать источником разночтений в дальнейших рассуждениях, я буду для простоты придерживаться обычной арабской записи независимо от способа обозначения, которая может на самом деле использоваться в данной системе. Нам мог бы понадобиться символ «пробел» для разделения различных «слов» или «чисел» в нашей системе, но, так как это тоже может вызвать путаницу, то мы будем по мере необходимости использовать для этих целей просто запятую (,). Произвольные («переменные») натуральные числа (равно как и целые, рациональные и т. д.; но давайте здесь ограничимся натуральными) мы станем обозначать буквами, например, t, u, v, ω, х, у, z, t', t'', t''' и т. п. Штрихованные буквы t', t'',… вводятся нами в употребление, дабы не ограничивать число переменных, которые могут встретиться в произвольном выражении. Мы будем считать штрих (' ) отдельным символом формальной системы, так что действительное количество символов в системе остается конечным. Помимо этого нам также потребуются символы для базовых арифметических операций =, +, х («умножить») и т. д.; для различных видов скобок (,), [,], и для обозначения логических операций, таких как &и»), =>следует»), Vили»), <=>тогда и только тогда»), ~ («не»). Дополнительно нам будут нужны еще и логические «кванторы»: квантор существования Eк.с.существует… такое, что») и квантор общности Aк.о.для любого… выполняется»). Тогда мы сможем такие утверждения, как, например, «последняя теорема Ферма», привести к виду:

1 ... 31 32 33 34 35 36 37 38 39 ... 167
На этой странице вы можете бесплатно читать книгу Новый ум короля: О компьютерах, мышлении и законах физики - Роджер Пенроуз бесплатно.

Оставить комментарий