Шрифт:
Интервал:
Закладка:
Есть ли логическое завершение у этого процесса? В определенном смысле — нет; но это приводит нас к ряду трудных математических рассуждений, которые здесь не могут быть нами рассмотрены во всех деталях. Вышеуказанная процедура обсуждалась Аланом Тьюрингом в статье[75], опубликованной в 1939 году. Примечательно, что на самом деле любое истинное (в общепринятом смысле) утверждение в арифметике может быть получено путем повторения процедуры «геделизации» такого рода (см. Феферман [1988]). Однако это может вызвать вопрос о том, как мы в действительности решаем, является ли утверждение истинным или ложным. Исключительно важным будет также понять, как на каждом этапе нужно выполнять присоединение бесконечного семейства утверждений Геделя, чтобы они порождали единственную дополнительную аксиому (или конечное число аксиом). Для выполнения такого присоединения требуется определенная алгоритмическая систематизация нашего бесконечного семейства. Чтобы быть уверенным в том, что подобная систематизация корректна и приводит к желаемому результату, нам придется опереться на интуитивные представления, выходящие за рамки системы — точь-в-точь, как мы это сделали для установления истинности Pk(k). Именно эти «прозрения» и не могут быть систематизированы, не говоря о том, что они должны лежать вне сферы действия любой алгоритмической процедуры!
Интуитивная догадка, которая позволила нам установить, что утверждение Геделя Pk(k) является на самом деле истинным, представляет собой разновидность общей процедуры, известной логикам как принцип рефлексии: посредством нее, размышляя над смыслом системы аксиом и правил вывода и убеждаясь в их способности приводить к математическим истинам, можно преобразовывать интуитивные представления в новые математические выражения, невыводимые из тех самых аксиом и правил вывода. То, как нами была выше установлена истинность Pk(k), как раз базировалось на применении этого принципа. Другой принцип рефлексии, имеющий отношение к доказательству Геделя (хотя и не упомянутый выше), опирается на вывод новых математических истин исходя из представления о том, что система аксиом, которую мы полагаем априори адекватной для получения математических истин, является непротиворечивой. Применение принципов рефлексии часто подразумевает размышления о бесконечных множествах, и при этом нужно быть всегда внимательным и остерегаться рассуждений, которые могут привести к парадоксам наподобие расселовского. Принципы рефлексии полностью противопоставляются рассуждениям формалистов. Если использовать их аккуратно, то они позволяют вырваться за жесткие рамки любой формальной системы и получить новые, основанные на интуитивных догадках, представления, которые ранее казались недостижимыми. В математической литературе могло бы быть множество приемлемых результатов, чье доказательство требует «прозрений», далеко выходящих за рамки исходных правил и аксиом стандартной формальной системы арифметики. Все это свидетельствует о том, что деятельность ума, приводящая математиков к суждениям об истине, не опирается непосредственно на некоторую определенную формальную систему. Мы убедились в истинности утверждения Геделя Pk(k), хотя мы и не можем вывести ее из аксиом системы. Этот тип «вйдения», используемый в принципе рефлексии, требует математической интуиции, которая не является результатом чисто алгоритмических операций, представимых в виде некоторой формальной математической системы. Мы вернемся к этому вопросу в главе 10.
Читатель может заметить определенное сходство между рассуждениями, устанавливающими, вопреки «недоказуемости», истинность Pk(k), и парадоксом Рассела. Помимо этого, наблюдается сходство и с доказательством Тьюринга о невозможности существования «машины Тьюринга», которая могла бы решить проблему остановки. Эти сходства не случайны. Между этими тремя событиями имеется прочная историческая нить. Тьюринг пришел к своему доказательству после изучения работ Геделя. Сам Гедель был очень близко знаком с парадоксом Рассела и смог преобразовать те парадоксальные рассуждения, которые уводили слишком далеко в область логических абстракций, в состоятельное математическое доказательство. (Все эти утверждения уходят корнями к диагональному процессу Кантора, описанному в предыдущей главе)
Почему мы должны принимать доказательства Геделя и Тьюринга и в то же время сбрасывать со счетов рассуждения, ведущие к парадоксу Рассела? Первые являются более ясными и безупречными с точки зрения математики, тогда как парадокс Рассела строится на более туманных рассуждениях об «огромных» множествах. Но нужно признать, что различия здесь не настолько очевидны, как нам хотелось бы. Попытка придать этим различиям ясность была лейтмотивом всей идеи формализма. Доказательство Геделя, с одной стороны, показывает, что строгий формальный подход не выдерживает критики, но с другой стороны, оно не приводит нас к абсолютно надежной альтернативе. По-моему, этот вопрос до сих пор не разрешен. Процедура, используемая в современной математике с целью избежать рассуждений, вовлекающих в рассмотрение «огромные» множества и приводящих к парадоксу Рассела, не является полностью удовлетворительной[76]. Более того, она, как правило, формулируется в чисто формалистских терминах — или же в терминах, которые не дают нам полной уверенности, что в результате их использования не возникнет противоречий.
Как бы там ни было, мне кажется, что из доказательства Геделя следует с очевидностью, что понятие математической истины не может быть заключено ни в. одну из формальных систем. Математическая истина выходит за рамки любого формализма. Возможно, это ясно даже без теоремы Геделя. Иначе как бы мы решали, какие аксиомы и правила вывода брать в расчет при построении формальной системы? Нашим руководством в принятии такого решения должно всегда служить интуитивное понимание о том, что является «самоочевидно верным» с учетом «смысловых значений» символов системы. Как нам решить, какие формальные системы стоит использовать (в соответствии с нашим интуитивным ощущением «самоочевидности» и «смысла»), а какие — нет? Понятие «внутренней непротиворечивости» явно не подходит для этой цели. Можно иметь много внутренне непротиворечивых систем, которые «бессмысленны» с точки зрения их практического использования, в которых аксиомы и правила вывода имеют ложные в нашем понимании значения или же не имеют никаких. «Самоочевидность» и «смысл» — это понятия, которые потребовались бы даже без теоремы Геделя.
Однако, без этой теоремы могло бы сложиться впечатление, что интуитивные понятия «самоочевидность» и «смысл» могли бы быть использованы только в самом начале раз и навсегда, просто чтобы изначально задать формальную систему, а затем мы могли бы отказаться от них при построении строгого математического доказательства для определения истины. Тогда, в соответствии с формалистскими воззрениями, эти «расплывчатые» интуитивные понятия задействовались бы только в «предварительных» размышлениях математиков, направленных на отыскание подходящего формального доказательства; а потом, когда дело дойдет до определения математической истины, они уже не играли бы никакой роли. Теорема Геделя демонстрирует, что такой подход в действительности не является логически состоятельным в рамках фундаментальной философии математики. Понятие математической истины выходит за пределы всей теории формализма. В этом понятии есть нечто абсолютное и «данное свыше». И это как раз то, о чем трактует математический платонизм, обсуждаемый в конце предыдущей главы. Всякая формальная система имеет свойство сиюминутности и «человеко-зависимости». Такие системы, безусловно, играют очень важную роль в математических рассуждениях, но они могут указывать только частично верное (или приблизительное) направление к истине. Настоящая математическая истина выходит за пределы сотворенного человеком.
Платонизм или интуиционизм?
Я указал две противостоящие друг другу школы математической философии, решительно причисляя себя более к платонистскому, нежели к формалистскому воззрению. В действительности же я применил довольно упрощенный подход при их разделении. Существует множество тонкостей, которые можно было бы принять в расчет. Например, в рамках платонизма можно поставить вопрос о том, существуют ли в реальности объекты математической мысли или это только лишь понятие «математической истины», которое является абсолютным. Я решил не обсуждать здесь подобные различия. В моем представлении абсолютность математической истины и платонистское существование математических понятий, по существу, тождественны. «Существование», которое должно быть приписано множеству Мандельброта, к примеру, есть свойство его абсолютной природы. Принадлежит ли точка плоскости Аргана множеству Мандельброта или нет — вопрос абсолютный, не зависящий от математика или компьютера, которые его исследуют. Эта «независимость-от-математика» множества Мандельброта и обеспечивает ему платонистское существование. Более того, наиболее тонкие детали этого множества лежат за пределами того, что можно достигнуть с помощью компьютера. Эти устройства способны только аппроксимировать структуры, имеющие свое, более глубокое и «не зависящее-от-компьютера», существование. Я, однако, готов согласиться с тем, что имеются и прочие разумные точки зрения, с которых можно исследовать этот вопрос. Но здесь нам нет необходимости придавать значение этим различиям.
- Ткань космоса. Пространство, время и текстура реальности - Брайан Грин - Физика
- Новый этап в развитии физики рентгеновских лучей - Александр Китайгородский - Физика
- Путешествие в страну РАИ - Дмитрий Николаевич Трифонов - Физика
- В делении сила. Ферми. Ядерная энергия. - Antonio Hernandez-Fernandez - Физика
- Теория Всего. Пояснительная Записка для математиков и физиков - Сергей Сергеевич Яньо - Физика / Науки: разное
- Физика движения. Альтернативная теоретическая механика или осознание знания - Александр Астахов - Физика