Шрифт:
Интервал:
Закладка:
7.6. Каждое из подкоренных выражений является полным квадратом.
7.7. Обратить внимание на то, что
9 + 4√2 = 8 + 4√2 + 1 = (2√2 + 1)².
7.8. Каждую из вторых скобок разбить на два слагаемых x² − u² и z² − у², после чего собрать все члены, содержащие множитель x² − u², и все члены, содержащие z² − у². (!)
7.9. Если обозначить левую часть через z, то, освобождаясь от радикалов, можно получить уравнение относительно z.
7.10. Равенство, которое нужно доказать, представляет собой однородное выражение седьмой степени. Возвести в степень
а + b + с = 0 и а + b = −с.
7.11. Задача сводится к разбору случаев, позволяющих раскрыть знаки абсолютной величины. Количество рассматриваемых случаев можно уменьшить, если заметить, что равенство, о котором идет речь, не меняется при замене x на −x.
7.12. Можно разобрать различные случаи взаимного расположения чисел x, у и 0. Однако проще возвести каждую часть в квадрат. Так как обе части неотрицательны, то мы получим равенство, равносильное данному. (!)
7.13. Условие можно записать в виде а⅓ + b⅓ = −с⅓ и возвести это соотношение в куб.
7.14. Данный трехчлен тождественно равен выражению
(ax + b)³ − (сх + d)³, где а > 0, b > 0, с > 0, d > 0.
K главе 8
8.1. Поскольку выражения, стоящие в скобках, расположены симметрично относительно значения x = 5, удобно ввести новое неизвестное у = x − 5. После того как мы раскроем скобки, произойдут значительные упрощения. (!)
8.2. Можно перемножить скобки по две, чтобы получить квадратные трехчлены, отличающиеся только свободным членом.
8.3. Если записать уравнение в виде x² − 17 = 3у², то возникает мысль доказать, что левая часть ни при каких целых x не делится на 3. (!)
8.4. Если целое у зафиксировать, то получим квадратное уравнение относительно x. Поэтому естественно обратить внимание на те ограничения, которые накладывает на у условие неотрицательности дискриминанта этого уравнения. (!)
8.5. Остаток следует искать в виде аx + b, а частное удобно обозначить через Q(x). Следуя определению деления, записать тождество.
8.6. Если переписать уравнение в виде
то благодаря условию целочисленности решений можно ограничить возможные значения у рассмотрением нескольких случаев.
8.7. Если подставить известный корень в уравнение, найти коэффициенты при рациональной и иррациональной частях, то получим систему двух уравнений для определения а и b.
8.8. Ответьте на вопрос: достаточно ли воспользоваться теоремой Виета, в силу которой свободный член и второй коэффициент должны быть положительными?
8.9. Если обозначить первый корень через x1, а знаменатель прогрессии через q, то останется применить теорему Виета. (!)
8.10. С помощью теоремы Виета получить зависимость между α1, α2, α3 и коэффициентами данного уравнения. (!)
8.11. Разделить x³ + аx + 1 на x − α по правилу деления многочлена на двучлен.
8.12. Ясно, что остаток нужно искать в виде аx + b. Если данный многочлен обозначить через P(x), а частное от его деления на (x − 2)(x − 3) — через Q(x), то мы сможем воспользоваться определением деления многочленов.
8.13. Если многочлен x4 + 1 разделится на x² + рx + q, то в частном мы получим многочлен второй степени, т. е. x² + аx + b.
8.14. Если данный многочлен делится на (x − 1)³, то после замены x − 1 = у получим многочлен, который должен делиться на у³.
8.15. Если многочлен четвертой степени с коэффициентом 6 при старшем члене делится на x² − x + q без остатка, то в частном обязательно получится многочлен 6x² + аx + b, в котором а и b определяются одновременно с p и q.
K главе 9
9.1. Точки −2, −1, 0 делят числовую ось на четыре интервала, в каждом из которых нужно решить данное уравнение. (!)
9.2. Если рассматривать значения x, обращающие в нуль числа, стоящие под знаками абсолютных величин, то придется разбить числовую ось на пять частей.
Удобнее ввести новое неизвестное у = x². (!)
9.3. Это уравнение четвертой степени. Следовательно, нужно найти искусственный прием, приводящий к его решению. Удобно воспользоваться тем, что слева стоит сумма квадратов.
9.4. Возвести в куб и сравнить полученное уравнение с данным.
9.5. Свести уравнение к симметрической системе, обозначив первое слагаемое левой части через u, а второе через v. (!)
9.6. Если под радикалами раскрыть скобки, то получим квадратные трехчлены, отличающиеся лишь свободным членом. Поэтому данное в условии уравнение удобно заменить системой, обозначив первое слагаемое его левой части через u, а второе через v.
9.7. Поскольку неизвестное входит в уравнение либо в сочетании x − b, либо в сочетании а − x, то удобно ввести обозначения и получить систему алгебраических уравнений.
9.8. Ввести вспомогательное неизвестное у и свести решение данного уравнения к решению системы уравнений относительно x и у.
9.9. Перенести в правую часть уравнения и возвести обе части в квадрат.
9.10. Чтобы избавиться от знаков абсолютной величины, можно поступить двояко: либо потребовать, чтобы правая часть уравнения была неотрицательной, и решить уравнения
x² − 3x/2 − 1 = −x² − 4x + β, x² − 3x/2 − 1 = x² + 4x − β;
либо рассмотреть два случая: в первом выражение, стоящее под знаком абсолютной величины, неотрицательно, а во втором — отрицательно.
9.11. Рассмотреть различные случаи расположения x и у по отношению к нулю (всего придется рассмотреть четыре случая). (!)
9.12. Решить систему уравнений с параметром k, а затем решить систему неравенств. (!)
9.13. Рассмотреть различные случаи взаимного расположения чисел x и у и чисел x и −у. Это позволит раскрыть знаки абсолютной величины. (!)
9.14. Второе уравнение — уравнение окружности радиуса √а . Нарисовать кривую, которая определяется первым уравнением.
9.15. Одно решение очевидно: x = у = 0. Если ху ≠ 0, то можно разделить первое уравнение на ху, а второе на x²у².
9.16. Если бы во втором и третьем уравнениях не было коэффициентов 2 и 3, то уравнения системы получались бы друг из друга с помощью циклической перестановки неизвестных x, у и z. Однако влияние коэффициентов оказывается столь сильным, что попытка использовать это свойство системы не приводит к успеху. Попытайтесь преобразовать систему в распадающуюся, для чего потребуется отыскать алгебраическое выражение, общее для двух уравнений, и исключить его.
9.17. Если первое уравнение системы записать в виде x + у = −z и возвести в квадрат, то с помощью второго ее уравнения можно найти ху.
9.18. Сопоставьте первое и последнее уравнения. Если записать их в виде
x + у = 1 − z, х³ + у³ = 1 − z³,
то напрашивается способ, с помощью которого можно преобразовать систему в распадающуюся.
9.19. Если раскрыть скобки, то получим систему линейных уравнений относительно u = x + у + z, v = ху + xz + yz, w = xyz. Найдя u, v и w, можно вычислить х³ + у³ + z³, если возвести x + у + z = u в куб: u³ = х³ + у³ + z³ + 3uv − 3w.
- Том 18. Открытие без границ. Бесконечность в математике - Энрике Грасиан - Математика
- Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич - Математика
- Математические диктанты. Числовые примеры. Все типы задач. Устный счет. 3 класс - Елена Нефедова - Математика
- Быстрая математика: секреты устного счета - Билл Хэндли - Детская образовательная литература / Математика
- ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров - Математика
- Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Владимир Артурович Левшин - Детская образовательная литература / Математика / Прочее
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Для юных математиков. Веселые задачи - Яков Перельман - Математика
- Игра в имитацию. О шифрах, кодах и искусственном интеллекте - Алан Тьюринг - Прочая околокомпьтерная литература / Математика
- Задачник о смысле жизни - Илья Галахов - Прочая детская литература / Математика / Периодические издания