Рейтинговые книги
Читем онлайн Физика для всех. Движение. Теплота - Александр Китайгородский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 79

Таким образом, если мы знаем вектор момента импульса, мы можем судить о величине момента, о положении плоскости движения в пространстве и о направлении поворота по отношению к «центру».

Если движение происходит в одной и той же плоскости, но плечо и скорость меняются, то вектор момента импульса сохраняет свое направление в пространстве, но меняется по длине. А в случае произвольного движения вектор импульса меняется как по величине, так и по направлению.

Может показаться, что такое объединение в одном понятии направления плоскости движения и величины вращательного момента служит лишь целям экономии слов. В действительности, однако, когда мы имеем дело с системой тел, которые движутся не в одной плоскости, мы получим закон сохранения момента только тогда, когда будем складывать вращательные моменты как векторы.

Это обстоятельство и показывает, что приписывание векторного характера вращательному моменту имеет глубокое содержание.

Вращательный момент всегда определяется относительно какого-либо условно выбранного «центра». Естественно, что его величина, вообще говоря, зависит от выбора этой точки. Можно, однако, показать, что если рассматриваемая нами система тел как целое покоится (ее полный импульс равен нулю), то вектор вращательного момента не зависит от выбора «центра». Этот вращательный момент можно назвать внутренним вращательным моментом системы тел.

Закон сохранения вектора момента импульса – третий и последний в механике закон сохранения. Однако мы не вполне точны, когда говорим о трех законах сохранения. Ведь импульс и момент импульса – это векторные величины, а закон сохранения векторной величины означает, что неизменной остается не только числовое значение величины, но и ее направление, иначе говоря, неизменными остаются три составляющих вектора по трем взаимно перпендикулярным направлениям в пространстве. Энергия – числовая величина, импульс – векторная, вращательный момент – также векторная. Поэтому точнее будет сказать, что в механике имеют место семь законов сохранения.

Волчки

Попробуйте поставить тарелку дном на тонкую трость и удержать ее в положении равновесия. Ничего не получится. Однако такой трюк является излюбленным номером китайских жонглеров. Им удается выполнить эту задачу, действуя одновременно с несколькими тросточками. Жонглер вовсе не старается удержать тонкие палочки в вертикальном положении. Кажется чудом, что тарелки, слегка опираясь на концы горизонтально наклоненных палок, не падают и почти висят в воздухе.

Если вам придется наблюдать за работой жонглеров вблизи, то обратите внимание на одну важнейшую вещь: жонглер закручивает тарелки так, чтобы они быстро вращались в своей плоскости.

Жонглируя булавами, кольцами, шляпами, – во всех случаях артист придает им вращение. Только в этом случае предметы возвращаются к нему в руки в том же положении, которое им было придано вначале.

В чем причина такой устойчивости вращения? Она связана с законом сохранения момента. Ведь при изменении направления оси вращения изменяется и направление вектора вращательного момента. Как нужна сила для изменения направления скорости, так нужен момент силы для изменения направления вращения, тем больший, чем быстрее вращается тело.

Стремление быстро вращающегося тела сохранять неизменным направление оси вращения может быть прослежено во многих случаях, подобных упомянутым. Так, вращающийся волчок не опрокидывается даже в том случае, если его ось наклонена.

Попробуйте рукой опрокинуть вертящийся волчок; оказывается, с ним не так-то легко справиться.

Устойчивость вращающегося тела используется в артиллерии. Вы слыхали, вероятно, что в стволе орудия делаются винтовые нарезы. Вылетающий снаряд вращается вокруг своей оси и благодаря этому не «кувыркается» в воздухе. Нарезное орудие дает несравненно лучшую прицельность и большую дальность полета, чем ненарезное. Летчику и морскому навигатору необходимо всегда знать, где находится истинная земная вертикаль по отношению к положению самолета или морского судна в данный момент. Использование отвеса не годится для этой цели, так как при ускоренном движении отвес отклоняется. Поэтому применяют быстро вращающийся волчок особой конструкции – его называют гирогоризонтом. Если установить его ось вращения на земную вертикаль, то она в таком положении и останется, как бы ни изменил самолет свое положение в пространстве.

Но на чем стоит волчок? Если он находится на подставке, которая поворачивается вместе с самолетом, то как же ось вращения сможет сохранить свое направление?

Подставкой служит устройство типа так называемого карданова подвеса (рис. 63). В этом устройстве при минимальном трении в опорах волчок может вести себя так, как будто он подвешен в воздухе.

При помощи вращающихся волчков можно автоматически поддерживать заданный курс торпеды или самолета. Это делается при помощи механизмов, «следящих» за отклонением направления оси торпеды от направления оси волчка.

На применении вращающегося волчка основано устройство такого важного прибора, как гирокомпас. Можно доказать, что под действием силы Кориолиса и сил трения ось волчка в конце концов устанавливается параллельно земной оси и, значит, указывает на север.

Гирокомпасы широко применяются в морском флоте. Главная их часть – мотор с тяжелым маховиком, делающим до 25000 об/мин.

Несмотря на ряд трудностей в устранении различных помех, в частности от качки корабля, гирокомпасы имеют преимущество перед магнитными компасами. Недостаток последних – искажение показаний из-за влияния железных предметов и электрических установок на корабле.

Гибкий вал

Валы современных паровых турбин – важные части этих грандиозных машин. Изготовление таких валов, достигающих 10 м в длину и 0,5 м в поперечнике, – сложная технологическая задача. Вал мощной турбины может нести нагрузку около 200 т и вращаться со скоростью 3000 об/мин.

На первый взгляд может показаться, что такой вал должен быть исключительно твердым и прочным. Это, однако, не так. При десятках тысяч оборотов в минуту жестко закрепленный и не способный изгибаться вал неминуемо ломается, какова бы ни была его прочность.

Нетрудно понять, почему непригодны жесткие валы. Как бы точно ни работали машиностроители, они не могут избежать хотя бы небольшой асимметрии колеса турбины. При вращении такого колеса возникают огромные центробежные силы – напомним, что их значения пропорциональны квадрату скорости вращения. Если они не уравновешены в точности, то вал начнет «биться» о подшипники (ведь неуравновешенные центробежные силы «вращаются» вместе с машиной), сломает их и разнесет турбину.

Это явление создавало в свое время непреодолимые затруднения в увеличении скорости вращения турбины. Выход из положения был найден на рубеже прошлого и нынешнего веков. В технику турбостроения были введены гибкие валы.

Для того чтобы понять, в чем заключалась идея этого замечательного изобретения, нам надо вычислить суммарное действие центробежных сил. Как же сложить эти силы? Оказывается, что равнодействующая всех центробежных сил приложена в центре тяжести вала и имеет такую же величину, как если бы вся масса колеса трубины была сосредоточена в центре тяжести.

Обозначим через a расстояние центра тяжести колеса турбины от оси, отличное от нуля из-за небольшой асимметрии колеса. При вращении на вал будут действовать центробежные силы, и вал изогнется. Обозначим смещение вала через l. Подсчитаем эту величину. Формула для центробежной силы нам известна (см. стр. 60) – эта сила пропорциональна расстоянию от центра тяжести до оси, которое теперь есть a + l, и равна 4π2n2M(a + l), где n – число оборотов в минуту, а M – масса вращающихся частей. Центробежная сила уравновешивается упругой силой, которая пропорциональна величине смещения вала и будет равна kl, где коэффициент k характеризует жесткость вала. Итак:

kl = 4π2n2M(a + l),

откуда

Судя по этой формуле, гибкому валу не страшны большие обороты. При очень больших (пусть даже бесконечно больших) значениях n прогиб вала l не растет неограниченно. Величина k/(4π2n2M), фигурирующая в последней формуле, обращается в нуль, а прогиб вала l становится равным величине асимметрии с обратным знаком.

Этот результат вычисления означает, что при больших оборотах асимметричное колесо, вместо того чтобы разорвать вал, изгибает его так, чтобы уничтожилось влияние асимметрии. Изгибающийся вал центрирует вращающиеся части, своим изгибом переносит центр тяжести на ось вращения и таким образом приводит к нулю действие центробежной силы.

1 ... 23 24 25 26 27 28 29 30 31 ... 79
На этой странице вы можете бесплатно читать книгу Физика для всех. Движение. Теплота - Александр Китайгородский бесплатно.

Оставить комментарий