Шрифт:
Интервал:
Закладка:
Мы не станем горевать с Архимедом об отсутствии точки опоры, которой, как он думал, ему только и недоставало, чтобы сместить земной шар.
Пофантазируем: возьмем крепчайший рычаг, положим его на опору и на короткий конец «подвесим маленький шарик» весом в… 6·1024 кГ. Эта скромная цифра показывает, сколько весит земной шар, «сжатый в маленький шарик». Теперь к длинному концу рычага приложим мускульную силу.
Если силу руки Архимеда считать за 60 кГ, то для смещения «земляного орешка» на 1 см руке Архимеда придется проделать путь в 6·1024/60 = 1023 раз больше. 1023 см – это 1018 км, что в три миллиарда раз больше диаметра земной орбиты!
Этот анекдотический пример отчетливо показывает масштабы «проигрыша в пути» при работе рычага.
Любой из примеров, рассмотренных нами выше, можно использовать как иллюстрацию не только выигрыша в силе, но и проигрыша в пути. Рука шофера, качающая домкрат, совершит путь, который будет во столько же раз больше величины подъема автомашины, во сколько раз мускульная сила меньше веса автомашины. Сдвигая колечки ножниц, чтобы разрезать лист жести, мы проделаем работу на пути, во столько же раз большем глубины прореза, во сколько мускульная сила меньше сопротивления жести. Камень, подымаемый ломом, поднимется на высоту, во столько же раз меньшую высоты, на которую опускается рука, во сколько раз сила мускулов меньше веса камня. Это правило делает понятным принцип действия винта. Представим себе, что болт с шагом резьбы в 1 мм мы завинчиваем при помощи гаечного ключа длиной 30 см. Винт за один оборот переместится вдоль оси на 1 мм, а наша рука за это же время пройдет путь в 2 м. Мы выигрываем в силе в 2 тысячи раз и либо надежно скрепляем детали, либо легким усилием руки передвигаем большие тяжести.
Другие простейшие машины
Проигрыш в пути как оплата выигрыша в силе есть общий закон не только рычажных инструментов, но и любых других приспособлений и механизмов, используемых человеком.
Для поднятия грузов широко применяются тали. Так называется система нескольких подвижных блоков, соединенных с одним или несколькими неподвижными блоками. На рис. 53 груз висит на шести веревках. Понятно, что вес распределяется, и натяжение веревки будет в шесть раз меньше веса. Подъем груза весом в тонну потребует приложения силы в 1000/6 = 167 кГ. Однако нетрудно сообразить, что для подъема груза на 1 м придется выбрать 6 м веревки. Для подъема груза на 1 м нужно 1000 кГм работы. Эту работу мы должны доставить в «любом виде» – сила в (1000/6) кГ должна действовать на пути 6 м, сила в 10 кГ – на пути в 100 м, сила в 1 кГ – на пути в 1 км.
Наклонная плоскость, о которой мы упоминали на стр. 26, также представляет собой приспособление, позволяющее выиграть в силе, проигрывая в пути.
Своеобразным способом умножения силы является удар. Удар молотком, топором, таран, да и просто удар кулаком может создать огромную силу. Секрет сильного удара несложен. Забивая молотком гвоздь в неподатливую стену, нужно как следует размахнуться. Большой размах, т.е. большой путь, на котором действует сила, порождает значительную кинетическую энергию молотка. Отдается эта энергия на малом пути. Если размах (1/2) м, а гвоздь вошел в стену на (1/2) см, то сила умножилась в 100 раз. Но если стена тверже и гвоздь при том же размахе руки вошел в стенку на (1/2) мм, то удар будет в 10 раз сильнее, чем в первом случае. В твердую стенку гвоздь войдет не так глубоко, и та же работа потеряется на меньшем пути. Выходит, что молоток работает, как автомат: бьет сильнее там, где труднее.
Если молоток «разгонять» силой в килограмм, то он ударит по гвоздю с силой в 100 кГ. А раскалывая дрова тяжелым колуном, мы ломаем дерево с силой в несколько тонн. Тяжелые кузнечные молоты падают с небольшой высоты – порядка одного метра. Расплющивая поковку на 1–2 мм, молот в одну тонну весом обрушивается на нее с огромной силой – в тысячи тонн.
Как складывать параллельные силы, действующие на твердое тело
Когда на предыдущих страницах мы решали задачи механики, в которых тело мысленно заменялось точкой, вопрос о сложении сил решался просто. Правило параллелограмма давало ответ на этот вопрос, а если силы были параллельны, то мы складывали их величины как числа. Теперь дело обстоит сложнее. Ведь воздействие силы на предмет характеризуется не только ее величиной и направлением, но и точкой ее приложения, или – мы пояснили выше, что это одно и то же – линией действия силы.
Сложить силы – значит заменить их одной. Это возможно далеко не всегда.
Замена параллельных сил одной равнодействующей – задача, осуществимая всегда (за исключением одного особого случая, о котором будет сказано в конце этого параграфа). Рассмотрим сложение параллельных сил. Конечно, сумма сил в 3 кГ и 5 кГ равна 8 кГ, если силы смотрят в одну сторону. Задача состоит в том, чтобы найти точку приложения (линию действия) равнодействующей.
На рис. 54 изображены две действующие на тело силы. Суммарная сила F заменяет силы F1 и F2, но это значит не только то, что F = F1 + F2, действие силы F будет равноценно действию F1 и F2 в том случае, если и момент силы F будет равен сумме моментов F1 и F2.
Мы ищем линию действия суммарной силы F. Конечно, она параллельна силам F1 и F2, но на каких расстояниях проходит эта линия от сил F1 и F2?
В качестве точки приложения силы F на рисунке изображена точка, которая лежит на отрезке, соединяющем точки приложения сил F1 и F2. По отношению к выбранной точке момент F, разумеется, равен нулю. Но тогда сумма моментов F1 и F2 по отношению к этой точке тоже должна равняться нулю, т.е. моменты сил F1 и F2, противоположные по знаку, будут равны по величине.
Обозначив буквами d1 и d2 плечи сил F1 и F2, можем записать это условие так:
Из подобия заштрихованных треугольников следует, что d2/d1 = l2/l1, т.е. точка приложения суммарной силы на соединительном отрезке делит расстояние между складываемыми силами на части l1 и l2, обратно пропорциональные силам.
Обозначим буквой l расстояние между точками приложения сил F1 и F2. Очевидно, l = l1 + l2.
Решаем систему двух уравнений с двумя неизвестными:
F1l1 − F2l2 = 0,
l1 + l2 = l.
Получим:
По этим формулам мы можем найти точку приложения равнодействующей силы не только в том случае, когда силы смотрят в одну сторону, но и в случае с силами, направленными в противоположные стороны (как говорят, антипараллельными). Если силы направлены в разные стороны, то они имеют противоположные знаки, и равнодействующая равна разности сил F1 − F2, а не их сумме. Считая отрицательной меньшую из двух сил F2, видим по нашим формулам, что l1 становится отрицательным. Это значит, что точка приложения силы F1 лежит не левее (как ранее), а правее точки приложения равнодействующей (рис. 55), при этом по-прежнему
Интересный результат получается при равных антипараллельных силах. Тогда F1 + F2 = 0. Формулы показывают, что l1 и l2 становятся при этом бесконечно большими. Какой же физический смысл имеет это утверждение? Так как относить результирующую в бесконечность бессмысленно, то, значит, равные антипараллельные силы нельзя заменить одной. Такую комбинацию сил называют парой сил.
Действие пары сил нельзя свести к действию одной силы. Любые две параллельные или антипараллельные силы можно уравновесить одной, а пару сил – нельзя.
Разумеется, было бы неверным сказать, что силы, составляющие пару, уничтожают одна другую. Пара сил оказывает весьма существенное действие – вращает тело; особенность действия пары сил состоит в том, что она не дает поступательного движения.
В некоторых случаях может возникнуть вопрос не о сложении параллельных сил, а о разложении данной силы на две параллельные.
- Физика – моя профессия - Александр Китайгородский - Физика
- Новый этап в развитии физики рентгеновских лучей - Александр Китайгородский - Физика
- Теория Вселенной - Этэрнус - Физика
- Физика движения. Альтернативная теоретическая механика или осознание знания - Александр Астахов - Физика
- 4a. Кинетика. Теплота. Звук - Ричард Фейнман - Физика
- Ткань космоса. Пространство, время и текстура реальности - Брайан Грин - Физика
- Ткань космоса: Пространство, время и текстура реальности - Брайан Грин - Физика
- Физика неоднородности - Иван Евгеньевич Сязин - Прочая научная литература / Физика
- Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер - Физика
- Солнечное вещество (сборник) - Матвей Бронштейн - Физика