Шрифт:
Интервал:
Закладка:
Я получил много ответов на эту задачу, среди них особенно любопытны одно дополнение и одно решение в стихах.
В присланном дополнении я изменил одно или два слова. Надеюсь, автор его не будет за это в обиде, поскольку в исправленных местах он допустил некоторые неточности.
— Постой, постой! — сказал молодой рыцарь, и слабый отблеск вдохновенья озарил черты его лица, с которого начало исчезать выражение глубокого отчаяния. — Когда мы взошли на вершину горы и тем самым достойно увенчали тяготы нашего пути, как мне кажется, роли не играет. В самом деле, за то время, пока мы взбираемся на одну милю по склону горы и проходим ее на обратном пути, мы по ровному месту могли бы пройти вдвое больше. Отсюда неопровержимо следует, что за битых 6 часов, которые мы находимся в пути, нигде не останавливаясь, чтобы перевести дух или полюбоваться природой, будет пройдено 24 мили.
— Великолепно! — воскликнул пожилой рыцарь. — Двенадцать миль туда и двенадцать миль обратно. На вершину горы мы взобрались где-то между 6 и 7 часами. А теперь послушай, что говорят старшие! Сколько раз по 5 минут прошло с 6 часов до того момента, когда мы достигли вершины горы, столько миль мы взбирались по ее мрачному склону!
Молодой рыцарь застонал и со всех ног бросился бежать в гостиницу.
Читательницы, скрывшиеся за псевдонимами Простушка Сюзанна и Добрая примета, изложили ход своих рассуждений в следующих стихах.
Лишь три пробило на часах, Пустились в путь тернистыйТе, кто не ведал слова «страх», — Два рыцаря-туриста.Один был молод и силен, Другой был стар и сед.Один был прям, другой — согбен Под грузом лат и лет.Сначала по равнине шли, Шагая в ногу дружно,Но сколько миль они прошли — Об этом знать не нужно.Известна лишь скорость, С которой брелиОни по равнинной Дороге в пыли:Хоть миля длинна, Каждый час проходилиГерои-туристы По дважды две мили.Но то по равнине. По склонам же горнымТуристы взбирались Не столь уж проворно,Но все же неплохо: Три мили за часОни проходили в горах Всякий раз.И вдвое быстрее Спускались с горы,Желая успеть До вечерней зари.В три вышли, А в девять вернулись назад,Преодолев Сто препон и преград.Длину маршрута даже дети Сумеют вычислить, заметив,Что милю любую всего в полчаса Туристы успеют пройти до конца,Затем повернуть и дойти до начала. Хоть сказано этим, казалось бы, мало,Но можно задачу решенной считать И наш узелок до конца развязать.
Узелок II
Задача 1. Званый обед у губернатора.Губернатор Кговджни дает званный обед в узком кругу и приглашает шурина своего отца, тестя своего брата, брата своего тестя и отца своего шурина. Найти число гостей на этом обеде.
Ответ.Один гость.
РешениеНа этом генеалогическом древе мужчины обозначены заглавными, а женщины — строчными буквами. Губернатор обозначен буквой Е, а его гость — буквой C.
Задача 2. Комнаты с удобствами.В каждой стороне квадрата находится по 20 дверей, делящих ее на 21 равную часть. Все двери перенумерованы по кругу, начиная с некоторой вершины квадрата. Какая из четырех дверей — № 9, 25, 52 или 73 — обладает тем свойством, что сумма расстояний от нее до трех остальных дверей наименьшая?
Ответ.Дверь № 9.
РешениеОбозначим девятую дверь через А, двадцать пятую — через В, пятьдесят вторую — через C и семьдесят третью — через D.
Тогда
(12…. означает «между 12 и 13»);
Таким образом, сумма расстояний до трех других дверей для А заключена между 46 и 47, для В — между 54 и 55, для С — между 56 и 57 и для D — между 48 и 51. (Почему не «между 48 и 49»? Постарайтесь разобраться сами.) Следовательно, сумма расстояний минимальна для двери А.
В задаче 2 я молчаливо предполагал, что нумерация домов начинается с одной из вершин квадрата. Подавляющее большинство читателей в своих решениях исходили из того же предположения. Однако один из читателей в своем письме сообщает иное: «Если предположить, что в середине каждой из сторон квадрата на площадь выходит некая улица (такое предположение не противоречит условиям задачи!), то вполне допустимо, что нумерация домов на площади начинается где-то на улицах и лишь продолжается на площади». Возможно, бывает и так, но не естественнее ли встать на точку зрения, разделяемую автором и большинством читателей?
Узелок III
Задача 1.Два путешественника садятся на поезда, идущие в противоположных направлениях по одному и тому же замкнутому маршруту и отправляющиеся в одно и то же время. Поезда отходят от станции отправления каждые 15 минут в обоих направлениях. Поезд, идущий на восток, возвращается через 3 часа, поезд, идущий на запад, — через 2. Сколько поездов встретит каждый из путешественников в пути (поезда, которые отбывают со станции отправления и прибывают на нее одновременно с поездом, которым следует путешественник, встречными не считаются)?
Задача 2.Путешественники следуют по тому же маршруту, что и раньше, но начинают считать встречные поезда лишь с момента встречи их поездов. Сколько поездов встретится каждому путешественнику?
Ответы.1)19 поездов. 2) Путешественник, следующий восточным поездом, встретит 12 поездов, его напарник — 8.
Решение.С момента отправления до возвращения в исходный пункт у одних поездов проходит 180 минут, у других — 120. Возьмем наименьшее общее кратное 180 и 120 (оно равно 360) и разделим весь маршрут на 360 частей (будем называть каждую часть просто единицей). Тогда поезда, идущие в одном направлении, будут следовать со скоростью 2 единицы в минуту, а интервал между ними будет составлять 30 единиц. Поезда, идущие в другом направлении, будут следовать со скоростью 3 единицы в минуту, а интервал между ними будет равен 45 единицам. Восточный поезд проходит 2/5 этого расстояния, встречный — остальные 3/5, после чего они встречаются в 18 единицах от станции отправления. Все последующие поезда восточный поезд встречает на расстоянии 18 единиц от места предыдущей встречи. В момент отправления западного поезда первый встречный поезд находится от него на расстоянии 30 единиц. Западный поезд проходит 3/5 этого расстояния, встречный — остальные 2/5, после чего они встречаются на расстоянии 18 единиц от станции отправления. Каждая последующая встреча западного поезда с восточными происходит на расстоянии 18 единиц от места предыдущей встречи. Следовательно, если вдоль всего замкнутого маршрута мы расставим 19 столбов, разделив его тем самым на 20 частей по 18 единиц в каждой, то поезда будут встречаться у каждого столба. При этом в первом случае (задача 1) каждый путешественник, вернувшись на станцию отправления, проедет мимо 19 столбов, а значит, встретит 19 поездов. Во втором случае (задача 2) путешественник, едущий на восток, начинает считать поезда лишь после того, как он проедет 2/5 всего пути, то есть доедет до восьмого столба, и таким образом успевает сосчитать лишь 12 столбов (или, что то же самое, поездов). Его конкурент сосчитает лишь 8. Встреча их поездов происходит в конце 2/5 от 3 часов, или 3/5 от 2 часов, то есть спустя 72 минуты после отправления.
Узелок IV
Задача.Имеются 5 мешков. Первый и пятый мешки вместе весят 12 фунтов, второй и третий — 13 1/2 фунта, третий и четвертый — 11 1/2 фунта, четвертый и пятый — 8 фунтов, первый, третий и пятый — 16 фунтов. Требуется узнать, сколько весит каждый мешок.
Ответ.5 1/2, 6 1/2, 7, 4 1/2 и 3 1/2 фунта.
Решение.Сумма результатов всех пяти взвешиваний равна 61 фунту, при этом вес третьего мешка входит в 61 фунт трижды, а вес всех остальных мешков лишь дважды. Вычитая из 61 фунта удвоенную сумму результатов первого и четвертого взвешиваний получаем, что утроенный вес третьего мешка равен 21 фунту. Следовательно, третий мешок весит 7 фунтов. Из результатов второго и третьего взвешиваний (с учетом того, что вес третьего мешка нам уже известен) находим вес второго и четвертого мешков: второй мешок весит 6 1/2 фунта, четвертый — 4 1/2. Наконец, из результатов первого и четвертого взвешиваний получаем для первого и пятого мешков 5 1/2 и 3 1/2 фунта.
- Логическая игра - Льюис Кэрролл - Детская образовательная литература
- Рассказы о М. И. Калинине - Александр Федорович Шишов - Биографии и Мемуары / Детская образовательная литература
- Воспоминания юнги Захара Загадкина - Михаил Ильин - Детская образовательная литература
- Человек под водой - Святослав Сахарнов - Детская образовательная литература
- Лето будет сниться… - Иоланта Ариковна Сержантова - Детская образовательная литература / Природа и животные
- Воспоминания о камне - Александр Ферсман - Детская образовательная литература
- Мой верный друг - Вася Нерезко - Детская образовательная литература / Домашние животные / Прочие приключения
- Чудо-компасы - Константин Иосифов - Детская образовательная литература
- Хочу всё знать [1970] - Анатолий Томилин - Детская образовательная литература
- О чем говорят названия растений - Борис Головкин - Детская образовательная литература