Рейтинговые книги
Читем онлайн 200 занимательных логических задач - Дмитрий Гусев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 17

40. В стакан можно поместить более тысячи булавок. В этом случае ни капли воды из него не выльется, но над краями стакана образуется небольшая водяная выпуклость или «горка». По закону Архимеда тело, погруженное в воду, вытесняет объем воды, равный объему тела. Объем одной булавки настолько мал, что объем водяной «горки» над поверхностью стакана равен объему более тысячи булавок.

41. На портрете изображен сын Петрова. Для решения этой задачи можно составить простую схему:

42. Надо обратиться к любому из воинов со следующим вопросом: «Если я спрошу тебя, этот ли выход ведет на свободу, то ты ответишь мне «да»?» При такой постановке вопроса тот воин, который все время лжет, будет вынужден говорить правду. Допустим, вы, показывая ему на выход к свободе, говорите: «Если я спрошу тебя, этот ли выход ведет на свободу, то ты ответишь мне «да»?» Правдой в этом случае будет, если он ответит «нет», но ему ведь надо солгать и поэтому он вынужден сказать «да».

43. Зрителю кажется, что линия разделена не на одинаковые отрезки: одни из них короче, а другие длиннее. Но это обман зрения, в чем можно убедиться, закрыв двумя полосками бумаги пририсованные к линии сверху и снизу усики или штрихи, которые и создают данную иллюзию. Без этих усиков отрезки будут восприниматься совершенно одинаковыми. Но если и на этот раз мы не доверяем своим глазам, то можно, не прибегая к помощи каких-либо измерительных приборов, перегнуть лист бумаги, на котором начерчен рисунок, пополам в одной из точек. Если при этом две другие ближайшие к ней точки совпадут, значит два отрезка, обозначенные этими тремя точками являются равными. То же самое можно проделать и с другими отрезками.

44. Надо зажечь спичку, подержать ее в стакане несколько секунд, после чего быстро поставить стакан кверху дном в тарелку рядом с монетой. При этом вся вода из тарелки соберется под стаканом и монету можно будет взять с освобожденной от воды поверхности тарелки. Когда мы вносим зажженную спичку в стакан, то воздух в нем расширяется от нагревания и частично вытесняется. Когда мы ставим стакан на тарелку, воздух в нем остывает и возвращается в прежний объем. Но теперь воздуха в стакане меньше, ведь часть его была вытеснена. В образовавшееся пустое пространство внутри стакана устремляется вода из тарелки под действием наружного давления воздуха.

45. Первыми пересекают реку миссионер и каннибал. После этого миссионер возвращается. Затем пересекают реку два каннибала. Один из них возвращается. Потом два миссионера пересекают реку. Миссионер и каннибал возвращаются. Два миссионера пересекают реку. Один каннибал возвращается. Два каннибала пересекают реку. Один каннибал возвращается. Два оставшихся каннибала пересекают реку.

46. Перед понедельником было воскресенье. Если три дня назад было воскресенье, то сегодня – среда. Если сегодня – среда, значит, послезавтра будет пятница.

47. Вор связал веревки вместе. По одной из них он полез к потолку, обрезал вторую веревку на расстоянии примерно 30 см от потолка и позволил ей упасть вниз. Из оставшегося висеть куска второй веревки он связал петлю. Затем, ухватившись за петлю, он перерезал первую веревку и просунул ее в петлю. После этого он спустился по двойной веревке вниз и вытащил веревку из петли.

48. Если таксист глух, как он понял, куда везти девушку? И еще: как он тогда понял, что она вообще что-то говорит?

49. Вода никогда не достигнет иллюминатора, потому что лайнер поднимается вместе с водой.

50. Задуманное число – это х. Над ним совершаются следующие действия:

х × 2 + 5 = 2х + 5

(2х + 5) × 5 = 10х + 25

10х + 25 + 10 = 10х + 35

(10х + 35) × 10 = 100х + 350

100х + 350–350 = 100х

100х : 100 = х

Когда собеседник просит вас назвать результат проделанных математических действий, ему известно, что это 100х + 350. Далее он отнимает от вашего результата 350 и делит то, что получилось, на 100. Таким образом, в итоге, он «отгадывает» задуманное вами число.

51. Поезда проследовали через тоннель в разное время суток.

52. Он рассуждал так: «Каждый из нас может думать, что его собственное лицо чистое. Б. уверен, что его лицо чистое, и смеется над испачканным лбом В. Но если бы Б. видел, что мое лицо чистое, он был бы удивлен смеху В., так как в этом случае у В. не было бы повода для смеха. Однако Б. не удивлен, значит, он может думать, что В. смеется надо мной. Следовательно, мое лицо испачкано».

53. Надо расположить шесть спичек так, чтобы они образовали трехгранную пирамиду. Основание – треугольник должен лежать на столе, а остальные треугольники – в воздухе, сходясь в вершине пирамиды.

54. Нужно сдвинуть верхнюю спичку, образовывая крохотный квадрат в центре фигуры.

55. Точка на тропинке, которую путешественник проходит в одно и то же время суток, как во время подъема, так и во время спуска, существует. В этом легко убедиться с помощью следующей схемы. Ось х – это время суток, а ось у – это высота подъема.

Кривые линии – это, соответственно, графики подъема и спуска. Точка их пересечения – как раз та самая, которую проходит путешественник в одно и то же время суток и на подъеме, и на спуске.

56. На первый взгляд может показаться, что во время поездки мы повстречаем десять поездов. Но это не так: мы встретим не только те десять поездов, которые вышли из Москвы после нашего отправления, но и те, которые к моменту нашего отъезда уже находились в пути. Значит, мы встретим не десять, а двадцать поездов.

57. Статуи надо расположить следующим образом:

58.

59. Обмен выгоден математику и невыгоден торговцу, так как количество денег, которые выплачивает торговец математику, пусть даже ничтожно малое вначале, увеличивается в геометрической прогрессии, а деньги, которые платит математик торговцу, увеличиваются в арифметической прогрессии. Через 30 дней математик отдаст торговцу около 50 тысяч рублей, а торговец будет должен математику более 10 миллионов рублей.

60. Новый год и раньше (т. е. по старому стилю) встречали 1 января. Однако старое 1 января (старый Новый год) сейчас, т. е. по новому стилю попадает на 14 января, поэтому никакого противоречия и недоразумения здесь нет. В условии задачи создается видимость противоречия за счет того, что в одних и тех же словах смешиваются различные понятия: Новый год по новому стилю и Новый год по старому стилю. И действительно, Новый год по новому стилю в старом стиле приходился бы на 19 декабря, а Новый год по старому стилю в новом стиле приходится на 14 января.

61.

62.

63. Человек, который стоит слева, будь он Правдолюбом, на вопрос: «Кто стоит рядом с тобой?» не мог бы ответить то, что ответил – «Правдолюб». Значит, слева не Правдолюб.

Но Правдолюб и не в центре, так как, будучи Правдолюбом, на поставленный вопрос «Кто ты?» он не мог бы ответить так, как ответил – «Дипломат».

Значит, Правдолюб стоит справа и, следовательно, рядом с ним, т. е. в центре находится Лжец, а слева стоит Дипломат.

64. Такой способ путешествий, конечно же непригоден. Атмосфера, притягиваемая Землей, вращается вместе с ней. А если бы даже атмосфера была неподвижной, то, поднявшись в нее с вращающейся Земли, мы некоторое время продолжали бы земное движение по инерции. Кроме того, если бы атмосфера была неподвижной, а Земля продолжала бы в ней вращаться (причем достаточно быстро: см. условие задачи), то в этом случае на земле не переставал бы бушевать грандиознейший ураган, который сделал бы невозможным не только какие-либо путешествия, но и саму человеческую жизнь.

65. Последовательность переливаний представлена в следующей таблице:

Таким образом, разделить 10 литров вина пополам, используя пустые ведра по 7 л и 3 л, можно с помощью 10 переливаний.

66. Катя придет первой, а Андрей опоздает, так как он придет к тому времени, когда на его часах будет 18.05, а на самом деле еще на 10 минут больше – 18.15. Катя постарается прийти по своим часам к 17.50, а на самом деле это будет 17.45.

67. Для решения этой задачи надо составить уравнение. Но сначала на основе запутанного ответа крокодила следует построить следующую схему (возраст попугая в прошлом примем за х):

Итак, на схеме видим, что сейчас крокодилу действительно в 10 раз больше лет, чем было попугаю тогда, когда крокодилу было столько лет, сколько попугаю сейчас. Поскольку разница в возрасте и в прошлом и в настоящем остается одинаковой, составим уравнение:

1 ... 5 6 7 8 9 10 11 12 13 ... 17
На этой странице вы можете бесплатно читать книгу 200 занимательных логических задач - Дмитрий Гусев бесплатно.
Похожие на 200 занимательных логических задач - Дмитрий Гусев книги

Оставить комментарий