Шрифт:
Интервал:
Закладка:
Частица со спином, равным нечетному кратному ħ/2 (т. е. ħ/2, 3ħ/2 или 5ħ/2 и т. д.) называется фермионом и обладает любопытной квантовомеханической особенностью: полный поворот на 360° переводит ее вектор состояния не в себя, а в себя со знаком минус! Многие частицы, встречающиеся в природе, относятся к числу фермионов, и мы еще узнаем позднее о них и их необычных свойствах, столь жизненно важных для нашего существования. Остальные частицы со спином, равным четному кратному ħ/2, т. е. целому кратному ħ (а именно 0, ħ, 2ħ, 3ħ…), называются бозонами. При повороте на 360° вектор состояния бозона переходит точно в себя.
Рассмотрим частицу с половинным спином, т. е. со значением спина ħ/2. Для определенности я буду называть такую частицу электроном, но ею с таким же успехом мог бы быть протон или нейтрон, а также атом подходящего вида. («Частица» может состоять из отдельных частей, если ее можно рассматривать квантовомеханически как единое целое с вполне определенным полным угловым моментом.) Предположим, что наш электрон покоится, и рассмотрим только его спиновое состояние. Пространство квантовомеханических состояний (гильбертово пространство) оказывается в этом случае двумерным, поэтому мы можем выбрать базис, состоящий всего лишь из двух состояний. Я обозначу их |↑) и |↓), чтобы указать, что в состоянии |↑) спин вращается слева направо относительно вертикального направления снизу вверх, в то время как в состоянии |↓) спин вращается слева направо относительно вертикального направления сверху вниз (рис. 6.24).
Рис. 6.24. Базис спиновых состояний электрона состоит всего лишь из двух состояний. В качестве них принято выбирать состояния спин вверх и спин вниз
Состояния |↑) и |↓) взаимно ортогональны, и мы считаем их нормализованными (|↑|2 и |↓|2 = 1). Любое возможное состояние спина электрона представимо в виде линейной суперпозиции, например, ω|↑) + z|↓), именно этих двух ортонормированных состояний |↑) и |↓), т. е. состояний спин вверх и спин вниз.
Нужно сказать, что в состояниях спин вверх и спин вниз нет ничего особенного. С тем же успехом мы могли бы описывать спин, вращающийся слева направо вокруг любого другого направления, например, слева-направо |→) и противоположного ему справа-налево |←). Тогда (при подходящем выборе комплексных весов) мы получили бы для |↑) и |↓) [155]:
|→) = |↑) + |↓) и |←) = |↑) — |↓).
Это позволяет нам по-новому взглянуть на ситуацию. Любое спиновое состояние электрона есть линейная суперпозиция двух ортогональных состояний |→) и |←),т. е. спинов направо и налево. Можно выбрать какое-нибудь совершенно произвольное направление, например, вектор состояния.
Он также является линейной комбинацией спинов |↑) и |↓) с некоторыми комплексными коэффициентами, скажем,
а любое спиновое состояние было бы представимо в виде линейной комбинации этого состояния
и ортогонального ему[156] состояния
(Заметим, что понятие «ортогональный» в гильбертовом пространстве не обязательно означает «образующий прямой угол с…» в обычном пространстве. Ортогональные вектора состояния в гильбертовом пространстве в данном случае соответствуют диаметрально противоположным направлениям, а не образующим друг с другом прямой угол.)
Каково геометрическое соотношение между направлением в пространстве, определяемым спином
и двумя комплексными числами ω и z? Так как физическое состояние, задаваемое спином
останется неизменным, если мы умножим
на любое ненулевое комплексное число, то значение имеет только отношение числа z к числу ω. Обозначим это отношение через
q = z/ω .
Тогда q будет обычным комплексным числом за исключением того, что теперь ему разрешено принимать значение q = ∞, чтобы не упускать из рассмотрения ситуацию с ω = 0, т. е. когда спин направлен вертикально вниз. Если q ≠ ∞, то мы можем представить q как точку на плоскости Аргана, как мы делали это в главе 3. Представим себе, что эта плоскость Аргана расположена горизонтально в пространстве, причем действительная ось направлена вправо в вышеуказанном смысле (т. е. в направлении спинового состояния |→) ). Представим теперь сферу единичного радиуса, центр которой совпадает с началом координат плоскости Аргана, а точки 1, i, — 1, -i лежат на экваторе этой сферы. Рассмотрим точку, совпадающую с южным полюсом этой сферы, который мы обозначим ∞. Осуществляя проекцию из южного полюса, мы отобразим всю плоскость Аргана на нашу единичную сферу. В результате любая точка q на плоскости Аргана окажется поставленной в соответствие единственной точке q на этой сфере, лежащей на прямой, соединяющей эти две точки с южным полюсом (рис. 6.25).
Рис. 6.25. Сфера Римана, представленная как пространство физически различных спиновых состояний частицы со спином 1/2. Сфера Римана стереографически спроецирована из ее южного полюса (∞) на плоскость Аргана, проходящую через экватор сферы
Такое соответствие называется стереографической проекцией и обладает многими красивыми геометрическими свойствами (например, сохраняет углы и отображает окружности в окружности). Такая проекция позволяет нам параметризовать точки сферы комплексными числами вместе с ∞, т. е. множеством возможных комплексных отношений q. Сфера, параметризованная таким образом, называется сферой Римана. Геометрический смысл сферы Римана для спиновых состояний электрона состоит в том, что направление спина, задаваемое соотношением
определяется реальным направлением из центра в точку q = z/ω, как показано на изображении сферы Римана. Заметим, что северный полюс соответствует состоянию |↑), задаваемому соотношением z = 0, т. е. q = 0, а южный полюс — состоянию |↓), задаваемому соотношением ω = 0, т. е. q = ∞. Самая правая точка сферы Римана помечена значением q = 1, что соответствует состоянию |→) = |↑) + |↓) а самая левая точка сферы Римана соответствует q = -1, что дает спиновое состояние |←) = |↑) — |↓). Самая дальняя задняя точка сферы Римана помечена значением q = i, соответствующим состоянию |↑) + i |↓), в котором спин направлен прямо от нас, а самая близкая точка сферы Римана помечена значением q = — i, соответствующим состоянию |↑) — i |↓), в котором спин направлен прямо к нам. Произвольная точка, помеченная q, соответствует состоянию |↑) + q |↓).
Как все это связано с измерением, которое можно было бы произвести над спином электрона?[157] Выберем некоторое направление в пространстве и обозначим его а. Если мы измеряем спин электрона в этом направлении, то ответ ДА означает, что электрон (теперь) действительно вращается слева направо вокруг направления а, в то время как ответ НЕТ означает, что электрон вращается слева направо вокруг направления, противоположного α.
- Ткань космоса. Пространство, время и текстура реальности - Брайан Грин - Физика
- Новый этап в развитии физики рентгеновских лучей - Александр Китайгородский - Физика
- Путешествие в страну РАИ - Дмитрий Николаевич Трифонов - Физика
- В делении сила. Ферми. Ядерная энергия. - Antonio Hernandez-Fernandez - Физика
- Теория Всего. Пояснительная Записка для математиков и физиков - Сергей Сергеевич Яньо - Физика / Науки: разное
- Физика движения. Альтернативная теоретическая механика или осознание знания - Александр Астахов - Физика