Рейтинговые книги
Читем онлайн Прицельный маркетинг. Новые правила привлечения и удержания клиентов - Джефф Забин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 49 50 51 52 53 54 55 56 57 ... 86

Составление прогнозов предполагает ознакомление с многочисленными историческими данными с помощью инструментов прогонки данных, отыскивающих поддающиеся интерпретации модели, и затем создание математических уравнений, отражающих взаимоотношения, лежащие в их основе. Эти математические уравнения разрабатываются для прогнозирования будущего поведения потребителей. Построенная для составления прогнозов модель дает возможность немедленно осуществить комплексный анализ, скажем, данных о сделках, взаимодействиях с потребителями или бухгалтерских данных. Она может обеспечить эмпирический, объективный или последовательный метод оценки массива данных и извлечение из него смысла, способного указать путь к принятию правильных бизнес-решений.

Прогностические модели часто называют поведенческими моделями, поскольку они могут быть использованы при прогнозировании будущего поведения клиента для определения вероятности того, например, что он не погасит в срок ссуды. Позволяя компаниям мгновенно разделять желанных, менее желанных и нежеланных клиентов – более того, применять разные маркетинговые подходы к разным потребительским сегментам, а также к индивидуальным потребителям на основе их предрасположенности к определенному типу поведения, прогностические модели дают возможность контролировать степень допустимого риска и принимать меры для увеличения прибыли.

Прогностические модели могут выражать взаимосвязанные отношения между десятками, сотнями и даже тысячами наборов данных в виде единой оценки. Эта оценка отражает вероятность определенной модели поведения или события в будущем. Например, прогностическая модель, построенная для анализа кредитных рисков, предлагает оценку, показывающую, какие клиенты, вероятнее всего, будут вовремя вносить кредитные взносы. Более высокие оценки зачастую указывают на более предпочтительное поведение.

У некоторых людей прогностическая аналитика ассоциируется с действиями любопытного ребенка, играющего в старую версию американской игры Magic 8 Ball. Абсолютно невыразительный по нынешним меркам пластмассовый шарик с окошком – эта игрушка более полувека развлекала детей тем, что якобы «умела заглядывать в будущее и находить ответы на их вопросы». И как порой были весьма загадочны эти ответы – например «Поживем – увидим» или «Спроси чуть позже», так не менее загадочными, честно говоря, бывают время от времени и ответы, получаемые с помощью действительно сложных техник прогнозирования будущего.

Конечно, прогностическая аналитика – феномен далеко не новый. Он давно использовался под видом статистического прогнозирования. А что такое статистика, как не процесс, с помощью которого люди стремятся изменить собственные ожидания или поведение, оценив реальное положение вещей? Приведем простой пример. Исходя из исторических климатических моделей, количество осадков, выпадающих в период с сентября по декабрь в городе Энтеббе, превышало средний уровень каждые четыре из десяти периодов дождей. Исходя из этого, предполагаемая вероятность того, что количество осадков, выпадающих в период с сентября по декабрь в Энтеббе, будет выше среднего, составляет 40 %. Рассматриваемые события могут носить естественный характер, как в случае с г. Энтеббе, или предумышленный, известный также как экспериментальный. Статистики дают людям знать, какие действия следует предпринимать для оптимизации определенных процессов в соответствии с некоторым целесообразным набором критериев. Прогнозирующие модели систематизируют такую оптимизацию.

Действительно, развитие прогностической аналитики во многом отражает переход от маркетинговой автоматизации к маркетинговой оптимизации. В этом контексте оптимизация означает способность анализировать большие объемы данных, исследовать многочисленные комбинации переменных, раскрывать ранее скрытые взаимоотношения – и, в конечном счете, приходить к пониманию и прогнозировать потребительское поведение на самом узком уровне. Настоящий же фокус в том, что все это можно осуществить в мгновение ока.

Аналитика следующего поколения стала возможной благодаря приложениям нового рода, характеризующимся более высокими скоростями процессов и более сложными алгоритмами выполнения трех основных функций. Первая из них относится к автоматическому открытию неизвестных прежде или считавшихся нелогичными моделей. Вторая функция относится к идентификационному анализу», используемому главным образом системами контроля качества и обслуживания кредитных карт. И третья функция, непосредственно связанная с темой нашей книги, относится к автоматизированному прогнозированию тенденций и поведения. Это основа любой программы удержания клиентов, направленной на сегментирование потребительской базы с целью определить наиболее прибыльные категории покупателей и спрогнозировать способность удерживать этих покупателей и управлять отношениями с ними посредством специально разработанной для них маркетинговой программы.

ИСПОЛЬЗОВАНИЕ ПРОГНОСТИЧЕСКОЙ АНАЛИТИКИ

Богатая данными потребительская база необходима компании для того, чтобы знать, кто они – ее клиенты, что они покупают, что им нравится, а что – нет, и т. д. Однако любая база данных бесполезна, если компания не использует содержащуюся в ней информацию для прогнозирования будущего поведения потребителей. Прогностическая аналитика – ключ к этой задаче. Прогнозирующие модели заставляют вечно экспериментирующие и приспосабливающиеся компании продуманно и эффективно тратить свои маркетинговые средства на возможности, гарантирующие надежный результат. В прицельном маркетинге прогностическая аналитика используется главным образом в трех сферах:

• сегментация;

• тестирование кампании;

• оптимизация работы call-центра.

Сегментация. Сегментация – это не представленный в виде перекрестных таблиц отчет, но и не разделение совокупности на группы по демографическим признакам. Сегментационные модели рассчитывают сложные взаимодействия многочисленных переменных, таких как данные о покупках, информация о поведенческих особенностях, демографические сведения, склонность к отклику и пр. Статистическое моделирование использует целый набор техник прогонки данных для определения сегментов людей, имеющих одинаковые модели поведения. Понимание этих сегментов позволяет компаниям определять профили очень прибыльных клиентов, а затем тестировать на них разные маркетинговые кампании.

1 ... 49 50 51 52 53 54 55 56 57 ... 86
На этой странице вы можете бесплатно читать книгу Прицельный маркетинг. Новые правила привлечения и удержания клиентов - Джефф Забин бесплатно.
Похожие на Прицельный маркетинг. Новые правила привлечения и удержания клиентов - Джефф Забин книги

Оставить комментарий