Шрифт:
Интервал:
Закладка:
В утверждении 5 говорится, что площади этих кругов будут равны (SС1=SС2), независимо от местоположения точки С, отчего они и называются кругами-близнецами Архимеда. Существуют и другие круги, связанные с арбелосом, они тоже носят личные имена — круг Аполлония, круг Паппа и круг Банкофа.
Еще одна фигура, представленная в «Книге лемм», называется салинон, что согласно интерпретации историка математики Томаса Хита означает «солонка». В утверждении 14 даются указания, как построить эту фигуру, и вновь встречается имя Архимеда. То, что он неоднократно упоминается в данном трактате, говорит об учебном характере книги. Инструкции же, которые даются в ней для постройки салинона (рисунок 17 на стр. 116), таковы.
— Проводится отрезок прямой АВ, и в его середине отмечается точка О.
— Строится полуокружность, диаметр которой равен отрезку АВ.
— На отрезке АВ строятся еще две полуокружности равного диаметра (меньшего, чем половина отрезка) так, чтобы они касались первой полуокружности в точках А и В.
— Получаются полуокружности с диаметрами AD и ЕВ и центрами соответственно в точках G и H.
— Строится полуокружность с диаметром DE в сторону, противоположную двум предыдущим, замыкая таким образом фигуру.
— Фигура, замкнутая построенной линией из четырех полуокружностей, и есть салинон.
Место предполагаемой могилы Архимеда в Сиракузах на Сицилии.
В 1965 году вычисление наименьшего из возможных решений задачи о быках заняло у компьютера IBM 7040 7 часов 49 минут (фото: Columbiana photo archive).
В «Книге лемм» Архимед представляет геометрическую фигуру «арбелос» (сапожный нож), названную так из-за сходства с соответствующим инструментом (фото: Thomas Schoch).
РИС. 17
РИС. 18
Интересно отметить, что при представлении салинона Архимед в том же утверждении описывает следующее его свойство.
— Проводится прямая, перпендикулярная АВ и проходящая через точку О.
— Эта прямая пересекает границы салинона в точках С и F.
— Берется точка Р, представляющая собой середину отрезка CF, и строится окружность с центром Р и диаметром CF.
— Можно доказать, что площадь салинона равна площади круга с диаметром CF и центром Р (рисунок 18).
Трехмерные архимедовы фигуры
К сожалению, до нас не дошел трактат «О правильных многогранниках», в котором, по- видимому, Архимед подробно описывал трехмерные тела, носящие в наше время его имя. Однако мы знаем о них благодаря александрийскому математику Паппу. В книге V своего «Математического собрания» он пишет:
«Хотя можно придумать множество многогранников самых разных видов, более всего заслужили внимание многогранники, которые имеют правильную форму. Таковы не только фигуры, найденные великим Платоном, то есть тетраэдр, куб, октаэдр, додекаэдр и пятый — икосаэдр, но и 13 многогранников, открытых Архимедом, сложенные из правильных, но не одинаковых многоугольников с равными сторонами и равными углами».
РИС. 19
Архимедовы тела, примеры которых приводятся на рисунке 19, — это 13 выпуклых многогранников, которые по большей части получаются из Платоновых тел «срезанием углов»: усеченный куб, усеченный тетраэдр, малый ромбокубооктаэдр, большой ромбокубооктаэдр, усеченный октаэдр, усеченный додекаэдр, усеченный икосаэдр, плосконосый куб, кубооктаэдр, малый ромбоикосододекаэдр, большой ромбоикосододекаэдр, икосододэкаэдр и плосконосый додекаэдр.
ГЛАВА 4
Военный инженер
Греческий мир в эпоху Архимеда был охвачен желанием понять и покорить окружающую природу. Для этой цели требовалось создавать разнообразные машины, все более и более сложные, будь то устройства открытия ворот, или подъемные механизмы для больших грузов, или более совершенные корабли. Именно в таких обстоятельствах математика, находившаяся на тот момент в расцвете, открыла дорогу инженерному искусству.
Архимед известен скорее в связи со своими машинами и техническими новшествами, чем с тем вкладом, который он внес в математику. Любопытно, что как раз о машинах, изобретение которых ему приписывается, он не написал ни строчки, по крайней мере мы об этом ничего не знаем. И тем не менее существует множество упоминаний о них в различных источниках, поэтому можно считать более-менее установленным фактом, что именно Архимед был их автором. Как уже говорилось, возможно, именно математики той эпохи уделяли наименьшее внимание технике, хотя ее развитие в античности шло довольно интенсивно.
Из рассказа об осаде Сиракуз становится ясно, что Архимед был очень талантливым механиком и инженером. Например, свои разработки в области рычага он использовал при конструировании и модернизации катапульты, а также в сложных системах блоков.
Сведения об изобретениях сиракузского мудреца не лишены мифологических и легендарных элементов: некоторые авторы даже рассказывают о применении им так называемых зажигательных зеркал, лучи которых смогли поджечь римский флот. Здесь мы еще раз обратимся к некоторым источникам, упомянутым в первой главе, чтобы привести библиографические ссылки на обсуждаемые механизмы.
АЛЕКСАНДРИЙСКИЕ МАШИНЫИстория инженерной мысли восходит к самим истокам возникновения человечества, если под инженерией понимать использование инструментов для улучшения человеческой жизни.
И все же именно ко времени Архимеда нам следует отнести начало научной инженерной деятельности, которая заключается в применении геометрических знаний к явлениям физического мира и в постройке различных механизмов. Филон Византийский (280-220 до н. э.) писал свои трактаты на койне, общегреческом диалекте того времени, чтобы его могли понять все интересующиеся специалисты. В своем труде «О метательных машинах» он анализирует устройство катапульты, исходя из веса метаемого снаряда и запасенной упругим элементом энергии. Герои Александрийский заимствовал некоторые идеи Архимеда, уточнив, к примеру, законы рычага и практически предвосхитив третий закон Ньютона — закон о действии и противодействии. Это привело к созданию им первой паровой турбины, известной как «эолипил» и состоявшей из закрытого шарообразного сосуда с двумя изогнутыми трубками: вырываясь из них, пар заставлял машину быстро вращаться. С практической точки зрения паровая машина Герона была всего лишь одним из модных автоматов той эпохи. Архимед же направил свои силы на математическое обоснование, необходимое для конструирования и постройки некоторых из подобных машин.
Видимо, Архимед использовал свой талант не только в военной области, но и в других сферах жизни: например, он сконструировал систему для подъема воды, известную теперь как архимедов винт, о которой мы еще поговорим.
АРХИМЕД В ФИЛАТЕЛИИВеликих исторических деятелей часто увековечивают на изображениях почтовых марок, и Архимед — не исключение. Приведем несколько примеров таких марок.
А: Италия. Дата выпуска: май 1983 года. Хотя изображение на марке заявлено как бюст Архимеда из неаполитанского Национального музея, на самом деле это бюст Архидама III. Здесь же изображен архимедов винт. В: Греция. Дата выпуска: апрель 1983 года. Эта картинка — перерисовка ренессансной мозаики, посвященной смерти Архимеда. Однако лицо у известного ученого такое же, как и на итальянской марке. Обратите внимание на равноплечные весы, символизирующие закон Архимеда.
С: Сан-Марино. Дата выпуска: апрель 1982 года. Забавно, что и здесь мы видим все то же изображение царя Архидама III. В правом верхнем углу находятся геометрические фигуры, которые древнегреческий ученый велел выбить на своем надгробии.
D: Гвинея-Биссау. Дата выпуска: 2008 год. Лицо снова чужое, то же самое, что и на предыдущих марках. В глубине — астероид, названный именем Архимеда.
Е: Никарагуа. Дата выпуска: 1971 год. Марка посвящена закону рычага. F: Испания. Дата выпуска: 1963 год. Репродукция картины испанского художника Хосе де Риберы (1591-1652), хранящейся в музее Прадо в Мадриде.
Гигантская «сиракузия» и архимедов винт
Греческий писатель Афиней Навкратийский (ок. 200) рассказывает в своей книге «Пир мудрецов», что тиран Гиерон II поручил Архимеду спроектировать огромный корабль, около 55 м длиной, принимающий на борт до 600 человек. Судно получило имя «Сиракузия» в честь одноименного города, а его постройку и отделку приписывают Архию Коринфскому.
- Открытия и гипотезы, 2015 №02 - Журнал «Открытия и гипотезы» - Научпоп
- Уравнение Бога. В поисках теории всего - Каку Митио - Научпоп
- Герои и мученики науки [Издание 1939 г.] - Клара Беркова - Научпоп
- ДМТ — Молекула духа - Рик Страссман - Научпоп
- Полосатая кошка, пятнистая кошка - Михаил Кречмар - Научпоп
- Ганнибал - Лансель Серж - Научпоп
- Растения. Параллельный мир - Владимир Цимбал - Научпоп
- Правда о «чудесных» исцелениях - Владимир Рожнов - Научпоп
- Ледяные лишаи - Евгений Гернет - Научпоп
- Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы - Адела Муньос Паес - Научпоп