Шрифт:
Интервал:
Закладка:
* * *
Плакат 1911 года, изображающий эксплуатацию рабочих того времени.
Джон Кеннет Гэлбрейт в книге «Американский капитализм» (1956) проанализировал, как предприятия объединяются в гигантские монополии, которые он называл техноструктурами, и начинают играть определяющую роль в формировании цен и зарплат. В ответ на натиск корпораций в обществе возникает противодействующая сила, которую Гэлбрейт назвал уравновешивающей. Она стремится приблизить ситуацию на рынке труда к совершенной конкуренции. Источниками этой силы являются объединения поставщиков, кооперативы и потребительские союзы. Особенно важна уравновешивающая роль профсоюзов, государства и международных организаций, в частности Международной организации труда.
Таким образом, деятельность профсоюзов, которые ведут активные переговоры с работодателями, и государства, принимающего нормативные акты, компенсирует слабую позицию отдельных рабочих на рынке труда и противодействует стремлению корпораций удерживать зарплаты на минимальном уровне. При этом учитывается, что зарплаты определяют покупательную способность рабочих, следовательно, если уровень оплаты труда опускается ниже определенной черты, качество жизни рабочих и социальная ситуация существенно ухудшаются. Именно по этой причине в большинстве стран установлен минимальный уровень оплаты труда, государство регулирует условия найма и труда, продолжительность рабочего дня, а также права работников в целом.
Регулирующая деятельность государства, разрабатывающего трудовое законодательство, и действия профсоюзов, которые достигают определенных соглашений с компаниями, лишают рынок труда гибкости, вводя для него определенные ограничения. В каждой компании определены организационная структура и уровень зарплат сотрудников.
В последние годы в развитых странах был отмечен значительный рост общего уровня оплаты труда. Средняя зарплата, которая является индикатором общего благосостояния, существенно увеличилась — главным образом под действием двух факторов: роста спроса на труд и роста уровня технологий и производительности.
При этом производительность труда повысилась не только благодаря капиталовложениям и технологическому прогрессу, но и вследствие роста общей культуры и образованности рабочих.
Зарплаты могут также увеличиваться в ситуации полной занятости в условиях снижения предложения со стороны активной части населения и роста числа работников, не согласных на предлагаемый уровень оплаты труда.
Зарплаты растут до тех пор, пока не становятся равными предельному продукту труда, умноженному на стоимость продукции, то есть
Предельный продукт труда ∙ Стоимость продукта = Доход от предельного продукта труда — Заработная плата.
Если мы рассмотрим количество труда, то совершенно логично, что чем выше заработная плата (доход от предельного продукта труда), тем меньше труда требуется предприятиям, а со снижением зарплат спрос на труд повысится. Если провести кривую спроса на труд и дохода от предельного продукта труда, равного заработной плате, мы заметим, что она приближается к осям координат, подтверждая вывод: чем выше зарплаты, тем меньше спрос на труд, и напротив, со снижением уровня зарплат спрос на труд возрастает.
График заработной платы и спроса на труд.
Если же проанализировать рынок труда с точки зрения предложения, мы увидим, что с ростом зарплат, предлагаемых предприятиями, предложение труда увеличивается, а по достижении определенного уровня оплаты труда предложение может снизиться, так как с ростом покупательной способности работники могут позволить себе посвящать больше времени досугу, семье и культурным мероприятиям, а не работе. Этот эффект замещения иллюстрирует точка С на графике предложения рабочей силы. В этой точке вследствие высокого уровня зарплат предложение труда снижается, и кривая выгибается в сторону оси абсцисс, таким образом, при определенном уровне оплаты труда существует максимальное предложение, после которого тенденция на рынке меняется на противоположную.
Кривая предложения труда (зависимость предложения труда от заработной платы).
Статистический вывод в трудовой статистике. Исследования безработицыСуть статистического вывода — использование выборки для получения представления о свойствах генеральной совокупности. Статистический вывод не является абсолютно верным — он лишь принимается за истину с небольшой величиной погрешности (уровнем значимости).
Допустим, что при сборе сведений о безработице в регионе с 8 миллионами жителей сформирована случайная выборка из 2000 человек. Из них 700 указали, что не имеют работы (35 % от 2000). Можно ли на основании этого сделать выводы об уровне безработицы? Иными словами, можно ли утверждать, что уровень безработицы приближается к 35 %? Цель исследования — получить результат с надежностью 95 %, то есть с уровнем значимости 5 % (α = 5/100 = 0,05).
Чтобы решить поставленную задачу, нужно сформулировать несколько статистических гипотез об уровне безработицы. Они не должны слишком отличаться от 0,35 (35 %): 34, 36, 33, 37, 32, 38 … Выбор гипотез следует продолжать до тех пор, пока мы не найдем значение, большее или меньшее 35 %, которое нужно будет отвергнуть. Так как требуемый уровень значимости составляет 5 %, чтобы проверить гипотезу, нужно проанализировать следующее неравенство.
Гипотезы, соответствующие этому, отвергаются.
Аналогичные расчеты повторяются для разных гипотез. Каждой гипотезе соответствует определенное значение р (предполагаемый уровень безработицы в регионе). Нужно выбрать значения р, близкие к 0,35 (35 %), и использовать биномиальное распределение вероятности, так как в нашем случае рассматриваемая переменная может иметь всего два значения: «да» и «нет». Однако поскольку в нашем примере размер генеральной совокупности значителен (n = 8000000), вместо биномиального распределения с высокой точностью можно использовать нормальное распределение вероятности.
Выберем в качестве первой гипотезы значение р = 0,33. Найдем среднее значение и среднеквадратическое отклонение по формулам биномиального распределения:
откуда имеем
Число безработных k в генеральной совокупности, выходящее за границы доверительного интервала, равно |k — μ|, число безработных в нашей выборке, большее или меньшее среднего по выборке, равно |700 — μ|. Чтобы гипотеза р = 0,33 была верна, вероятность |k — μ| — |700 — μ| согласно биномиальному закону распределения должна быть меньше, чем α = 0,05, что выражается следующим образом:
РВ(|k — 660| >= |700–660 |) < 0,05.
Преобразуем неравенство и получим:
Вместо биномиального распределения можно с высокой точностью использовать нормальное распределение, симметричное относительно среднего значения μ = 660 при р = 0,33. Следовательно,
PB(|k — 660)| >= 40) = РВ(620 >= k >= 700) = 2РВ(k >= 700), так как выделенные области равны.
Чтобы заменить биномиальный закон (РВ для дискретной переменной k) на нормальный (PN для непрерывной переменной х), нужно внести поправку:
PBinominal (k >= 1) PNormal (x >= a — 0.5).
Таким образом, как можно видеть на графике,
PB(|k — 660)| >= 40) = 2РВ(k >= 700) 2∙PN(x >= 700 — 0,5) = 2∙PN(x >= 699,5).
Теперь переменная х заменяется переменной z, соответствующей стандартизованному нормальному распределению, и мы сможем воспользоваться стандартными таблицами. Замена выполняется по формуле
Как можно видеть на графике,
В таблицах значений, соответствующих стандартизованному нормальному распределению, значению z < 1,878 соответствует вероятность PNT (z <= 1,878) = 0,96999 и РВ(|k — 660 | >= 40) 2 (1–0,96999) = 0,0602, что превышает 0,05. Так как вероятность, соответствующая гипотезе р = 0,33, составляет 0,0602, что превышает 0,05, мы можем не отвергать гипотезу о том, что в генеральной совокупности численностью 8 миллионов человек уровень безработицы составляет 33 %. Иными словами, можно утверждать, что в этом регионе уровень безработицы составляет 33 %, возможная ошибка не превышает 5 %.
- Том 27. Поэзия чисел. Прекрасное и математика - Антонио Дуран - Математика
- ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров - Математика
- Математика. Поиск истины. - Клайн Морис - Математика
- Математика. Поиск истины. - Морис Клайн - Математика
- Том 12. Числа-основа гармонии. Музыка и математика - Хавьер Арбонес - Математика
- Математика. Утрата определенности. - Морис Клайн - Математика
- Быстрая математика: секреты устного счета - Билл Хэндли - Детская образовательная литература / Математика
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Математические диктанты. Числовые примеры. Все типы задач. Устный счет. 3 класс - Елена Нефедова - Математика
- БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета - Перельман Яков Исидорович - Математика