Шрифт:
Интервал:
Закладка:
§ 43. Маршрутная съемка
Во время экскурсий план пройденного пути зачерчивают приблизительно с помощью так называемой маршрутной съемки. Производится она следующим образом. В месте выхода из города определяют по компасу направление, на ближайшую точку пути (отдаленное дерево, валун, верстовой столб, угол здания), наносят это направление по глазомеру на бумагу, записав при нем соответствующий «румб». Идя по этому направлению до замеченного предмета, измеряют расстояние шагами. Отложив по произвольному масштабу (на глаз) это расстояние по прочерченному направлению, с соответствующей числовой пометкой, определяют по компасу направление на следующий ближайший этап, измеряют расстояние шагами и т. д., отмечая все это на черновом плане. По этому наброску и сделанным пометкам (относительно направлений и расстояний) изготовляют дома более аккуратно маршрутный план экскурсии. Все замеченные по пути особые места, лежащие вне дороги, также могут быть нанесены на этот план, если были измерены направления на них из определенных точек и соответствующие расстояния.
Ту же работу можно выполнить более тщательно с помощью «планшета», т. е. дощечки с прикрепленным к ней компасом. К дощечке прикалывают кнопками лист бумаги, на котором и чертят план. Став в точку выхода, держат планшет горизонтально, повернув его так, чтобы вороненый конец стрелки показывал на юг. На планшет кладут трехгранную масштабную линейку, прикладывают ее край к точке, изображающей начальный пункт, и направляют ее так, чтобы, глядя вдоль ее верхней грани, видеть следующий пункт пути. Когда это сделано, прочерчивают прямую линию и откладывают на ней по масштабу отрезок, отвечающий длине этой линии в натуре. Перенеся затем планшет в следующий пункт, повертывают его как и в первый раз (так что все линии планшета на новом пункте остаются параллельными тому направлению, которое они имели на прежнем). Приставив край линейки к точке, изображающей место нахождения планшета, направляют ее на ближайший следующий пункт; измерив расстояние до него, откладывают на прочерченной линии в масштабе соответственную длину, переносят планшет на четвертый пункт и т. д.
Этим приемом можно снимать не только маршруты, но и участки с несложными очертаниями, обходя его с планшетом вдоль границы. Съемка будет произведена более точно, если при этом пользоваться не планшетом, который держат в руках, а доской, устанавливаемой на треноге (такой столик называется м е н з у л о й). Перенося доску с места на место, ее располагают («ориентируют» не по компасу, а приводят, помощью линейки, начерченные на ней линии в положение, параллельное соответствующим линиям местности. Ход работы ясен из чертежа 123.
§ 44. План речки
Пусть наша речка извивается, как показано на черт. 124. Начинаем с того, что провешиваем близ ее берега магистраль АВ. Через каждые 5 или 10 метров вбиваем в землю колышек: из этих точек и из концов магистрали восста-новляем перпендикуляры (можно на глаз), и помощник измеряет длину этих перпендикуляров (можно шагами).
Затем провешиваем вторую магистраль ВС и с ней повторяем то же самое.
Чтобы иметь возможность построить угол между обеими магистралями, измеряем расстояние между двумя колышками М и N. Так как нам известно и расстояние этих колышков от точки В, то в треугольнике MBNмы знаем длину каждой из его трех сторон. Поэтому нам нетрудно будет начертить на плане этот треугольник. Чертя план, мы изобразим сначала магистраль АВ и отметим на ней положение колышков. Потом начертим треугольник MBN. Продолжив сторону BN, отложим на ней длину магистрали ВС и отметим на ней колышки. Таким образом мы и начертим обе магистрали под надлежащим углом одна к другой.
Но мы прервали наше измерение речки. Дойдя до точки С, провешиваем магистраль СЕ и измеряем расстояние между колышками О и Р, чтобы иметь возможность построить угол С. Таким же образом поступаем у поворота Е и т. д.
Ведя измерения, вы зарисовываете на черновом наброске все измеренные вами расстояния и записываете возле каждой линии ее длину. Зарисовывая магистральные линии, отмечая их длину и расстояния между колышками, вы одновременно (или ваш помощник) набрасываете на глаз очертания берегов (наиболее крупные извилины) и отмечаете длину перпендикуляров, к магистральным линиям.
По этим наброскам и записям расстояний нетрудно изобразить на плане один берег реки. А зная ширину речки, можно изобразить и линию противоположного берега.
Подобным образом можно снять на план также и дорогу, – вообще любой извилистый контур.
§ 45. Измерение ширины речки
Чтобы измерить ширину речки, не переправляясь на другой берег, а оставаясь все время на одном берегу, можно поступать следующим образом.
На противоположном берегу реки (черт. 125) намечаем какой-нибудь предмет А, хорошо видимый с этого берега На этом берегу провешиваем вдоль берега прямую линию ВС и с помощью эккера отыскиваем на этой линии точку D так, чтобы линия AD была перпендикулярна к ВС. От точки Dотмеряем два раза кряду какую-нибудь длину, например, 10 метров, и отмечаем концы ее вехами: расстояние DEи EGпусть равны 10 метрам. От точки Gпровешиваем помощью эккера линию GHпод прямым углом к ВС. Идя по этой линии, отыскиваем: на ней такую точку K, глядя из которой веха Е кажется покрывающей точку А. Другими словами, веха, установленная в точке К, должна быть по одной прямой с точками Е и А. Нахождением этой точки наша работа кончается: расстояние GK равно расстоянию AD. Чтобы узнать теперь ширину реки, остается, только вычесть из полученной длины небольшое расстояние от точки D до берега.
§ 46. Измерение расхода воды в речке
Когда план реки сделан, вы, чтобы иметь о реке полное представление, можете еще определить количество воды, протекающей в ней в одну секунду, – то, что называется «расходом» воды: в реке.
Для этого понадобится сделать некоторые измерения и расчеты, которыми мы сейчас и займемся.
Для простоты проделаем сначала это не с речкой, а с канавой. Прежде всего измерим скорость течения в ней воды. Для этого отмерим вдоль нее какую-нибудь длину – например 20 метров – и у концов промеренной линии воткнем по шесту. Став у того шеста, который выше по течению, бросим в воду какой-нибудь поплавок (закупоренную пустую бутылку с вложенным в нее листком белой бумаги), заметив этот момент по часам с секундной стрелкой. Затем, перебежав к переднему шесту, подстережем момент, когда поплавок поравняется с ним. Измерение скорости закончено; остается лишь ее вычислить. Положим, расстояние в 20 метров поплавок проплыл в 50 секунд; значит, в одну секунду вода проносила его на 20: 50, т. е. на 0,4 м, или на 40 см.
Скорость, которую мы таким образом получаем, не есть, строго говоря, та с р е д н я я скорость, с какою движутся водяные частицы в канаве: это скорость н а и б о л ь ш а я. Ведь поплавок плыл по поверхности волы, а здесь вода проносится быстрее, чем у дна или боков канавы, где она трется о землю и замедляет этим свое течение. Однако, разница получается небольшая, и в данном случае мы можем не принимать ее в соображение.
Итак, мы узнали, с какою скоростью движутся частицы воды, текущей в канаве. Чтобы определить число протекающих мимо нас литров воды, нужно еще определить поперечную водяную площадь, или то, что называется площадью «живого сечения» канавы, – величину DABС (черт. 126). Если сечение канавы прямоугольное, то для вычисления площади живого сечения достаточно измерить ширину канавы и глубину воды в ней. Пусть ширина канавы 0,75 метра, а глубина воды 25 см, т. е. 0,25 метра. Тогда площадь живого сечения этой канавы равна
0,75 ? 0,25=0,19 кв. м.
Нетрудно сообразить, что при скорости 0,4 метра через такое сечение ежесекундно проносится
0,19 ? 0,4 = 0,076 куб. м = 76 литров.
Мы узнали, что мимо нас ежесекундно протекает в канаве 76 литров воды.
Если стенки канавы не отвесны, а наклонны, то живое сечение ее имеет форму не прямоугольника, а трапеции DABC, (черт. 126). Чтобы определить площадь DABC, нужно измерить, кроме глубины, еще расстояние DС и АВ. Найдя полусумму DCи АВ, умножаем ее на глубину канавы (т. е. на высоту трапеции). Пусть DС = 1 метру, АВ = 0,75 м, а глубина по-прежнему 0,25 м. Тогда площадь живого сечения канавы равна
- Живой учебник геометрии - Перельман Яков Исидорович - Математика
- Для юных математиков. Веселые задачи - Яков Перельман - Математика
- БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета - Перельман Яков Исидорович - Математика
- Загадки и диковинки в мире чисел - Яков Исидорович Перельман - Детская образовательная литература / Математика / Развлечения
- БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета - Яков Перельман - Математика
- Том 27. Поэзия чисел. Прекрасное и математика - Антонио Дуран - Математика
- Teopeма Гёделя - Эрнст Нагель - Математика
- ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров - Математика
- Геометрическая мозаика в интегрированных занятиях. Конспекты занятий с детьми 5-9 лет - Лидия Тихонова - Математика
- Задачник о смысле жизни - Илья Галахов - Прочая детская литература / Математика / Периодические издания