Шрифт:
Интервал:
Закладка:
35. Сколько весит вода в прямоугольном баке длиною 1,5 м и шириною 1 м, если она налита до высоты 0,6 м?
Р е ш е н и е. Объем воды в баке равен 1,5 ? 1 ? 0,6 = 0,9 куб. м. Так как 1 куб. метр воды весит 1 тонну, то вода в баке весит 0,9 тонны.
Подобным же образом можно по объему вычислять вес тел и из любого другого материала, если знать, сколько весит 1 куб. сантиметр этого материала. Очень полезно поэтому располагать таблицей, в которой указано, сколько весит 1 куб. сантиметр различных веществ.
Вес 1 куб. сантиметра вещества называются удельным весом этого вещества. Краткая табличка удельных весов наиболее употребительных материалов здесь приведена.
Таблица удельных весов
Твердые тела
Золото. . . . . . . . . . . . . 19,3 грамма
Свинец. . . . . . . . . . . . 11,4»
Серебро. . . . . . . . . . . . 10,5»
Медь кованая. . . . . . . . . . 8,9»
Латунь. . . . . . . . . . . . . 8,5»
Железо, сталь, чугун. . . . . . . 7,8»
Олово. . . . . . . . . . . . . 7,3»
Цинк. . . . . . . . . . . . . 7,1»
Алюминий. . . . . . . . . . . 2,6»
Гранит. . . . . . . . . . . . . 2,5»
Стекло оконное. . . . . . . . . 2,5»
Лед. . . . . . . . . . . . . . 0,9»
Дерево сосновое сухое. . . . . . 0,5»
Пробка. . . . . . . . . . . . 0,20»
Жидкости
Ртуть. . . . . . . . . . . . . 13,6 грамма
Вода чистая. . . . . . . . . . 1»
Спирт (100) керосин. . . . . . . 0,8»
Нефть. . . . . . . . . . . . . 0,76»
Числа этой таблицы показывают:
1) сколько граммов весит 1 куб. см данного вещества;
2) сколько килограммов весит 1 куб. дециметр этого вещества;
3) сколько тонн весит 1 куб. метр этого вещества.
Действительно, если 1 куб. см, например, алюминия весит 2,6 грамма, то 1 куб. дм должен весить в 1000 раз больше, т. е. такое же число килограммов, а 1 куб. метр еще в 1000 раз больше, т. е. такое же число тонн.
Из следующих примеров видно, как надо пользоваться этой таблицей для разных расчетов.
36. Сколько весит железный брусок длиною 0,6 м, шириною 2,5 см и толщиною 1,5 см?
Р е ш е н и е. Объем бруска в куб. см равен 60 ? 2,5 ? 1,5 = 225. В таблице находим, что 1 куб. см железа весит 7,8 г; следовательно, брусок весит 7,8 ? 225 = 1800 г = 1,8 кг.
37. Какой объем занимает полкилограмма свинца?
Р е ш е н и е. Каждые 11,4 грамма свинца занимают объем в 1 куб. см (см. таблицу). Значит, наш кусок свинца имеет в объеме столько куб. см, сколько раз в его весе заключается 11,4 г. Разделив 0,5 кг на 11,4 г получаем 500: 11,4 = 44.
Итак, объем 0,5 кг свинца – 44 куб. см.
38. Найти вес 1 м железа, раз меры поперечного сечения которого указаны в мм на черт. 106.
Р е ш е н и е – по образцу предыдущих задач.
Повторительные вопросы
Какие вам известны единицы веса? – Что такое грамм? Килограмм? Тонна? – Какой объем занимает грамм воды? Килограмм воды? – Что такое удельный вес? – Что означают числа в таблице удельных весов?
VI. КРУГЛЫЕ ФИГУРЫ[7]
§ 34. Длина окружности
Предварительное упражнение
Обтяните ниткой какой-нибудь круглый предмет (стакан, кастрюлю, решето) по окружности и, вытянув нитку, измерьте ее. Определите затем, во сколько раз длина окружности этого предмета больше ее диаметра.
На практике часто нужно бывает определять длину окружности. Чтобы заготовить, например, железную полосу для шины колеса, кузнецу нужно заранее знать длину этой полосы, т. е. длину окружности колеса. Всего проще в этом случае обтянуть обод колеса ниткой и затем, вытянув, измерить ее длину. Не всегда, однако, бывает удобно поступать так, а часто способ этот и вовсе неприменим: нельзя, например, найти по этому способу длину окружности, начерченной на бумаге.
Другой способ определения длины окружности состоит в том, что измеряют только диаметр и по нему узнают длину окружности, пользуясь следующим свойством окружности:
д л и н а в с я к о й о к р у ж н о с т и б о л ь ш е е е д и а м е т р а п р и м е р н о в 3,14 р а з а.
Если, например, длина диаметра 75 см, то длина окружности 75 ? 3,14 ? 240 см. Правило это справедливо для всякой окружности, как бы малы или как бы велики ни были ее размеры.
Проверяя правильность этого соотношения, непосредственным измерением (диаметра – масштабной линейкой, окружности – ниткой или лентой), мы получаем числа лишь более или менее близкие к 3,14. Несовпадение результатов объясняется ошибками измерения: очень трудно измерить совершенно точно диаметр и окружность, а потому нельзя поручиться за строгую точность их отношения, полученного таким способом. Но в математике существуют иные пути к нахождению этого отношения, которых мы изложить здесь не можем, но которые дают отношение длины окружности к диаметру с точностью, более чем достаточною для практических целей.
Число, показывающее, во сколько раз окружность длиннее диаметра (т. е. выражающее отношение длины окружности к диаметру), условились ради краткости обозначать греческою буквою (произносится: «пи»). Приближенно ?= 3,14; более точные значения этой величины выражаются большим числом цифр после запятой. На практике в большинстве случаев достаточно пользоваться сейчас приведенным значением (= 3,14), которое поэтому нужно твердо запомнить.[8] Итак,
о т н о ш е н и е д л и н ы в с я к о й о к р у ж н о с т и к е е д и а м е т р у р а в н о, т. е. 3,14 и л и 31/7.
Отсюда следует, что если диаметр окружности d, то длина ее С = ? ? d, или ?d
(произносится: «пи дэ»).
Если радиус окружности R, то длина ее
С = 2R?= 2?R(«два пи эр»).
Пользуясь этими формулами, вычисляют длину окружности по ее диаметру или радиусу.
Наоборот, зная длину окружности, можно по тем же формулам вычислить ее диаметр или радиус:
Пусть, например, мы желаем определить поперечник дерева (т. е. диаметр его сечения). Измерив лентой окружность дерева, получаем, скажем, 86 см: это – длина окружности. Ее диаметр, т. е. поперечник, равен 86: 3,14 = 27 см.
Повторительные вопросы
Как определить длину окружности измерением? На чем основано нахождение длины окружности вычислением? – Чему равно отношение длины окружности к ее диаметру? Что условились обозначать буквою? – Чему равно? – Как определить длину окружности по диаметру? По радиусу? – Как определить диаметр по длине окружности? Радиус по длине окружности? Как выразить эти соотношения формулами?
Применения
39. Метр составляет 40 000 000-ю долю окружности земного шара. Найти радиус Земли.
Р е ш е н и е. Радиус найдем делением окружности на 2, т. е. на 6,28.
40 000 000: 6,28 = 6 370 000 метров.
40. Ведущее колесо паровоза делает в секунду 4 оборота. Диаметр колеса 1,3 м. Определить часовую скорость паровоза.
Р е ш е н и е. За один оборот колеса паровоз подвигается на 3,14 ? 1,3 м. Поэтому секундная скорость = 4 ? 3,14 ? 1,3, а часовая
4 ? 3,14 ? 1,3 ? 3 600 = 59 000 м = 59 км.
41. Пассажирский паровоз проходит в час 60 км. Диаметр ведущего колеса 2,1 м. Сколько целых оборотов делает колесо в секунду?
Р е ш е н и е. За один оборот колеса паровоз перемещается на 3,14 ? 2,1 = 6,6 м. Так как в секунду он подвигается на
60 000/3600 = 17 метров, то искомое число оборотов равно 17: 6,6, т. е. около 21/2.
42. Ленинград лежит в 25° к востоку от Гринвичского меридиана. Христиания – на том же параллельном круге на 11° восточнее Гринвичского меридиана. Радиус параллельного круга, на котором расположены эти города 3200 км. Определить взаимное расстояние этих городов по дуге параллельного круга.
Р е ш е н и е. Расстояние между названными городами в градусах равно 250° – 11° – 140°. Длина параллельного круга равна
2 ? 3,14 ? 3200 = 20 000 км. Длина 1° этого круга = 55 км. Искомое расстояние равно 770 км.
§ 35. Площадь круга
Предварительные упражнения
Начертите несколько окружностей и измерьте их площадь палеткой. Во сколько» раз площадь каждого круга больше площади квадрата, сторона которого равна, радиусу? Если у вас есть роговые весы, то определите также отношение площадей названных фигур по весу, т. е. узнайте, сколько бумажных квадратов надо взять, чтобы уравновесить вырезанный из той же бумаги круг, радиус которого равен стороне квадрата.
Та часть плоскости, которая охватывается окружностью, называется к р у г о м (черт. 107). Площадь круга, т. е. величину этой части плоскости, крайне неудобно, а иногда и невозможно находить помощью палетки, разделения на полосы или посредством взвешивания. Гораздо более точный и всегда применимый способ определения площади круга состоит в ее в ы ч и с л е н и и по длине диаметра или радиуса. Установим правило вычисления.
- Живой учебник геометрии - Перельман Яков Исидорович - Математика
- Для юных математиков. Веселые задачи - Яков Перельман - Математика
- БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета - Перельман Яков Исидорович - Математика
- Загадки и диковинки в мире чисел - Яков Исидорович Перельман - Детская образовательная литература / Математика / Развлечения
- БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета - Яков Перельман - Математика
- Том 27. Поэзия чисел. Прекрасное и математика - Антонио Дуран - Математика
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Том 31. Тайная жизнь чисел. Любопытные разделы математики - Хоакин Наварро - Математика
- Том 11. Карты метро и нейронные сети. Теория графов - Клауди Альсина - Математика
- Математические диктанты. Числовые примеры. Все типы задач. Устный счет. 3 класс - Елена Нефедова - Математика