Шрифт:
Интервал:
Закладка:
Рис. 7.18. Если убрать ограничение ВЕЙЛЬ = 0, то большой взрыв получится тоже высокоэнтропийным, с условием ВЕЙЛЬ → ∞. Такая вселенная была бы сплошь испещрена белыми дырами и в ней не выполнялось бы второе начало термодинамики — в полном противоречии с нашим опытом
В такой гипотетической вселенной, конечно же, не нашлось бы места для второго начала термодинамики!
Насколько особым был Большой взрыв?
Попробуем разобраться с вопросом о том, насколько ограничивающим для Большого взрыва было условие типа ВЕЙЛЬ = 0. Для простоты (как и ранее) мы будем считать вселенную замкнутой. Для того чтобы составить ясную и конкретную картину, далее мы везде будем полагать, что число барионов В — т. е. общее число протонов и нейтронов, во вселенной составляет примерно
В = 1080.
(Не существует каких-то особых оснований для выбора именно этого значения, кроме тех эмпирических данных, которые приводят к нему как к нижней оценке В. Эддингтон однажды заявил, что вычислил В точно и полученное им значение оказалось близким к приведенному выше! Кажется, что сейчас уже никто не принимает всерьез эти вычисления, но значение 1080 надежно утвердилось.) Если бы мы взяли большее значение В (в действительности может оказаться, что ВЕЙЛЬ → ∞), то величины, полученные нами в этом случае, оказалась бы еще поразительнее тех (и без того весьма экстраординарных чисел), к которым мы через несколько шагов придем!
Попробуем представить себе фазовое пространство (Глава 5. «Фазовое пространство») всей вселенной! Каждая точка этого пространства потенциально соответствует определенному начальному состоянию, из которого вселенная могла начинать свою эволюцию. На рис. 7.19 мы условно изображаем Творца, который в своей деснице держит «булавку», чтобы отметить ею некую точку нашего фазового пространства.
Рис. 7.19. Для сотворения вселенной, близкой по своим свойствам к той, в которой мы живем, Творец ограничивает свой выбор исчезающе малым объемом в фазовом пространстве возможных вселенных, в рассматриваемом случае — всего около объема всего пространства. (Этот объем и нацеленная на него булавка показаны без соблюдения масштабов!)
Каждое положение булавки соответствует творению особой вселенной. Точность, с которой Творец создает какую-либо вселенную, напрямую связана с энтропией этой вселенной. Создать вселенную с высокой энтропией было бы относительно «легко», поскольку в этом случае в распоряжении Творца имеется большой объем фазового пространства, в который надо указать булавкой. (Напомним, что энтропия пропорциональна логарифму объема соответствующего фазового пространства.) Но чтобы создать вселенную в состоянии с низкой энтропией — так, чтобы в ней выполнялось второе начало термодинамики, — Творец должен направить булавку в гораздо меньший объем фазового пространства. Насколько малым должен быть этот объем, чтобы в результате творения получилась вселенная, напоминающая по своим свойствам ту, в которой мы живем? Для ответа на этот вопрос, мы должны обратиться к замечательной формуле, выведенной Якобом Бекенштейном [1972] и Стивеном Хокингом [1975], которая говорит о том, чему должна быть равна энтропия черной дыры.
Рассмотрим черную дыру и допустим, что площадь ее горизонта есть А. Формула Хокинга-Бекенштейна для энтропии черной дыры гласит:
где k — константа Больцмана, с — скорость света, G — ньютоновская гравитационная постоянная и ħ — постоянная Планка, деленная на 2π. Самая существенная часть этой формулы заключена во множителе А/4. Часть, стоящая в скобках, содержит только необходимые для соблюдения размерности физические константы. Таким образом, энтропия черной дыры оказывается пропорциональной площади ее поверхности. Для сферически симметричной черной дыры эта площадь оказывается пропорциональной квадрату массы этой дыры:
Объединяя это с формулой Бекенштейна — Хокинга, мы получаем, что энтропия черной дыры пропорциональна квадрату ее массы:
Таким образом, энтропия, приходящаяся на единицу массы (Sч.д./m) черной дыры, пропорциональна ее массе и оказывается тем больше, чем больше черная дыра. Следовательно, для заданной массы или, эквивалентно, — согласно формуле Эйнштейна Е = mc2, — для заданной энергии, наибольшая энтропия достигается тогда, когда вся материя сколлапсирует в черную дыру! Более того, энтропия системы двух черных дыр существенно возрастает, когда эти дыры сливаются в одну! Гигантские черные дыры, типа тех, которые, как полагают, находятся в центрах галактик, заключают в себе колоссальное количество энтропии — намного превосходящее те ее значения, которые встречаются в других физических ситуациях.
Утверждение о том, что максимум энтропии достигается при коллапсе всей массы в черную дыру, требует небольшого пояснения. Анализ термодинамики черных дыр, проведенный Хокингом, показывает, что с любой черной дырой можно связать некоторую ненулевую температуру. Одним из следствий этого является тот факт, что в состоянии с максимальной энтропией в черной дыре не может быть заключена вся масса-энергия; максимум энтропии достигается, когда черная дыра приходит в тепловое равновесие с «тепловым резервуаром излучения». Температура этого излучения оказывается действительно ничтожной для черных дыр с любым разумным размером. Так, к примеру, для черной дыры с массой порядка массы Солнца эта температура оказалась бы равной примерно 10 -7 К, что значительно ниже температур, достигнутых в настоящее время в лабораториях, и намного меньше температуры 2,7 К межгалактического пространства. Для черных дыр больших размеров температура Хокинга оказывается еще меньшей!
Эта температура могла бы оказаться существенной для нашего обсуждения только в том случае, если либо (а) во вселенной существуют намного меньшие черные дыры, которые называют черными мини-дырами; либо (б) вселенная не успеет полностью сколлапсировать за время, меньшее хокинговского времени испарения — времени, за которое черная дыра полностью испаряется. Относительно (а) надо заметить, что черные мини-дыры могут возникнуть лишь в случае особенно хаотичного Большого взрыва. В нашей вселенной их не может быть очень много, в противном случае они бы уже как-то проявили бы себя; более того, согласно излагаемой мной здесь точки зрения, их вообще не должно быть.
Что же касается (б), то для черной дыры с солнечной массой хокинговское время испарения имело бы величину, превосходящую нынешний возраст вселенной где-то в 1054; а для черных дыр бо́льших размеров оно оказалось бы еще более продолжительным. Таким образом, вряд ли эффект испарения может существенно изменить наши предыдущие рассуждения.
Чтобы иметь некоторое представление о гигантских величинах энтропии черных дыр, рассмотрим чернотельное фоновое излучение с температурой 2,7 К, которое, как долго казалось, давало наибольший вклад в энтропию вселенной. Астрофизики были просто ошарашены огромным количеством энтропии, заключенным в этом излучении, которое намного превосходило все значения энтропии, с которыми приходилось сталкиваться в других ситуациях (например, на Солнце). Энтропия фонового излучения составляет примерно 108 на один барион (здесь я снова перехожу к «естественной системе единиц», в которых постоянная Больцмана равна единице). (По сути, это означает, что на каждый барион приходится 108 фотонов фонового излучения.) Таким образом, если всего имеется 1080 барионов, то для полной энтропии фонового излучения во вселенной мы имели бы величину
1088.
Несомненно, что если бы не было черных дыр, то эта величина представляла бы собой практически всю энтропию вселенной, поскольку энтропия фонового излучения намного превосходит энтропию всех других обычных процессов. Так, например, энтропия, приходящаяся на один барион на Солнце, оказывается порядка единицы. С другой стороны, по меркам черных дыр, энтропия фонового излучения — это просто «писк комара». Для черной дыры в одну солнечную массу формула Бекенштейна— Хокинга дает нам значение энтропии около 1020 на один барион (в естественных единицах). И даже если бы вселенная состояла всего-навсего из одной черной дыры с массой Солнца, полная энтропия оказалась бы уже намного превосходящей приведенное ранее значение, а именно, была бы равной
- Ткань космоса. Пространство, время и текстура реальности - Брайан Грин - Физика
- Новый этап в развитии физики рентгеновских лучей - Александр Китайгородский - Физика
- Путешествие в страну РАИ - Дмитрий Николаевич Трифонов - Физика
- В делении сила. Ферми. Ядерная энергия. - Antonio Hernandez-Fernandez - Физика
- Теория Всего. Пояснительная Записка для математиков и физиков - Сергей Сергеевич Яньо - Физика / Науки: разное
- Физика движения. Альтернативная теоретическая механика или осознание знания - Александр Астахов - Физика