Рейтинговые книги
Читем онлайн Том 27. Поэзия чисел. Прекрасное и математика - Антонио Дуран

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 ... 31

* * *

Эта редкая особенность иррациональных чисел становится очевидной, если мы попытаемся ответить на совершенно невинные вопросы: чему равен √2? чему равно π? Иррациональное число по своей сути нельзя представить в виде дроби: можно найти дробь, которая будет отличаться от этого числа всего на одну миллионную или даже на одну миллиардную, но она не будет равна иррациональному числу. Если мы захотим уменьшить заданную величину разницы, мы сможем найти новую дробь, но она опять не будет равна иррациональному числу. Эта ситуация подобна проклятию: с той же жестокой монотонностью, с какой протекают тяжелые дни, описанные в романе «Улей», дроби будут следовать друг за другом, и последняя дробь, возможно, будет очень близка к иррациональному числу, но по-прежнему не равна ему.

Получается, чтобы описать иррациональное число, нужно использовать более или менее точные рациональные приближения. Чтобы выразить иррациональное число с абсолютной точностью, нам потребуется бесконечное количество рациональных приближений. Так родился новый тип математических задач — задачи о рациональном приближении иррациональных чисел.

Одним из первых внес вклад в решение задач этого типа Архимед, который получил известный результат, связанный с самой знаменитой математической константой: найдя приближенное значение длины окружности с помощью правильного 96-угольника, он определил, что число π меньше дроби 22/7 чуть больше чем на одну тысячную. Впоследствии этот результат пытались улучшить многие ученые: так, китайский математик Цзу Чунчжи обнаружил, что дробь 355/113 отличается от π менее чем на 3 десятимиллионных (это же значение получили многие европейские математики в конце XVI столетия).

Марки, выпущенные в честь Архимеда и Цзу Чунчжи — двух математиков древности, которые нашли самые точные приближения числа π.

С XVII века разложение в ряд стало подлинной одержимостью, охватившей всех, кто занимался вычислением рациональных приближений числа π. Эта лихорадка не обошла стороной даже столь видных ученых, как Ньютон и Эйлер.

Но как можно найти приближенное значение иррационального числа в виде дробей в общем виде? Уточним задачу. Определить несократимую дробь p/q тем «затратнее», чем больше ее знаменатель — чтобы определить ее, нужно разделить единицу на столько частей, сколько указывает знаменатель дроби. Следовательно, чтобы определить, насколько точным приближением иррационального числа является дробь p/q, нужно сравнить разность между этой дробью и иррациональным числом относительно знаменателя q дроби. Для произвольного иррационального числа (обозначим его через а) нужно оценить наименьшее значение выражения |а — p/q| для всех дробей p/q с неизменным знаменателем q. Здесь для оценки разности двух чисел мы используем привычную математическую нотацию: разность |х — у|, записанная между вертикальными чертами, обозначает, что всегда рассматривается разность между большим и меньшим числом, следовательно, эта разность всегда будет положительной. Точнее говоря, |х — у| равно х — у, если х больше у, и у — х, если у больше х.

Так как все дроби со знаменателем, равным q, расположены на числовой прямой на одинаковом расстоянии друг от друга, равном 1/q, можно сделать вывод: для любого иррационального числа а всегда найдется дробь p/q такая, что |а — p/q| < 1/(2 — q). Мы всегда можем представить иррациональное число в виде дроби, при этом погрешность будет меньше величины, обратной удвоенному знаменателю дроби.

К примеру, если мы рассмотрим число π и = 10 и воспользуемся калькулятором, то получим, что наиболее точное рациональное приближение числа π со знаменателем, равным 10, будет дробью 31/10. В этом случае π — 31/10 = 0,04159…, что в действительности несколько меньше, чем 1/(2·10) = 0,05. Это наиболее точное рациональное приближение со знаменателем, равным 10, из всех возможных. При других значениях знаменателя точность приближения можно значительно улучшить.

Рассмотрим = 7. Самым точным рациональным приближением числа π дробью со знаменателем, равным 7, будет дробь Архимеда — 22/7. В этом случае |π — 22/7 | = 0,00126… Как вы можете видеть, дробь Архимеда 22/7 ближе к истинному значению π, чем приведенная выше дробь 31/10. Нечто похожее произойдет, если мы рассмотрим дроби со знаменателем, равным 113. В этом случае самым точным приближением будет дробь 355/113, полученная Цзу Чунчжи: |π — 355/113 | = 0,000000266. Если мы рассмотрим дроби со знаменателем 125, большим 113, то самым точным приближением будет 393/125, которое будет заметно хуже: |π — 393/125 | = 0,0024. Это приближение даже менее точно, чем дробь Архимеда.

Становится очевидным, что одни знаменатели подходят для приближенных значений иррациональных чисел лучше других. Вопрос заключается уже не в том, как найти точное приближение иррационального числа дробью, а как найти точное приближение дробью с правильно выбранным знаменателем.

С учетом этого немецкий математик Иоганн Петер Густав Лежён Дирихле (женатый на сестре композитора Феликса Мендельсона) в 1842 году показал, что иррациональное число всегда можно представить в виде дроби так, что ошибка будет меньше величины, обратной квадрату знаменателя дроби.

Немецкий математик Иоганн Петер Густав Лежён Дирихле (1805–1859), после смерти Гаусса сменивший его на посту главы кафедры в Гёттингене в 1855 году.

Доказательство этого утверждения элементарно и основано на «принципе ящиков», позднее названном в честь Дирихле. Принцип Дирихле представляет собой простое отражение здравого смысла: если мы хотим поместить определенное число голубей в ящики, при этом голубей больше, чем ящиков, то в конечном итоге в одном из ящиков окажется больше одного голубя. Принцип Дирихле полезен при доказательстве определенных математических результатов, среди которых — теорема Дирихле о рациональном приближении. Эта теорема звучит так: для данного иррационального числа а существует бесконечно много дробей вида p/q таких, что |a — p/q| < 1/q2. Доказательство этой теоремы приведено на следующей странице. Этот результат существенно точнее, чем тот, о котором мы говорили выше, так как с увеличением число 1/q2 уменьшается намного быстрее, чем 1/(2·q). Результат Дирихле нельзя улучшить относительно второй степени 1/q. Это тесно связано с разделением иррациональных чисел на алгебраические и трансцендентные.

Рассмотрим √2: это иррациональное число, однако его можно достаточно просто описать последовательностью целых чисел (…, —6, —5, —4, —3, —2, —1, 0, 1, 2, 3, 4, 5, 6…)» так как является решением уравнения с целыми коэффициентами х2  —2 = 0. Числа, которые представляют собой решения уравнения с целыми коэффициентами (вне зависимости от степени уравнения), называются алгебраическими.

* * *

ДИРИХЛЕ И «ПРИНЦИП ЯЩИКОВ»

Доказательство принципа Дирихле выглядит следующим образом. Рассмотрим произвольное иррациональное число а и выберем некоторое натуральное число N. Теперь рассмотрим числа а, 2·а, 3·а…, N·а и (N + 1)·а. Этот список содержит N + 1 число. Для каждого из них (обозначим их в общем виде k·а) найдется натуральное число рk такое, что разность k·арk будет лежать на интервале от 0 до 1. К примеру, если а = √5 = 2,236…, то 2·а = 4,472… и р2 будет равно 4.3·а = 6,708…, р3 будет равно 6 и так далее. Теперь расположим числа от 0 до 1 в N ящиков: в первом ящике окажутся числа от 0 до 1/N, во втором — от 1/N и 2/N и так далее. В последнем ящике окажутся числа от (N — 1)/N до 1. Так как наш список чисел k·арk, k = 1, …, N + 1 содержит N + 1 число, лежащее на интервале от 0 до 1, и мы расположили числа от 0 до 1 в разных ящиках, то, согласно принципу Дирихле, в одном из этих ящиков будет больше одного числа. Допустим, что числа k·арk и n·арn  находятся в одном ящике. Очевидно, что разница между двумя числами в одном ящике меньше 1/N. Отсюда следует, что |k·арk — (n·арn)| < 1/N. Если теперь мы введем обозначения kn и р = рkрn, то получим: |q·ар| < 1/N, или |аp/q| < 1/(q·N). Так как и k, и меньше + 1, получим, что q меньше N. Учитывая, что это число можно считать положительным, имеем |аp/q| < 1/q2. Так как число а иррационально, а N — произвольное натуральное число, неравенство |аp/q| < 1/(q·N) гарантирует, что мы можем найти бесконечно много различных дробей вида p/q, удовлетворяющих неравенству |аp/q| < 1/q2.

1 ... 6 7 8 9 10 11 12 13 14 ... 31
На этой странице вы можете бесплатно читать книгу Том 27. Поэзия чисел. Прекрасное и математика - Антонио Дуран бесплатно.
Похожие на Том 27. Поэзия чисел. Прекрасное и математика - Антонио Дуран книги

Оставить комментарий