Рейтинговые книги

Головоломки. Выпуск 2 - Яков Перельман

Уважаемые читатели!
Тут можно читать бесплатно Головоломки. Выпуск 2 - Яков Перельман. Жанр: Прочая детская литература. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте club-books.ru (книга онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
0/0
Описание онлайн-книги Головоломки. Выпуск 2 - Яков Перельман:
Увлекательные и каверзные головоломки для юных математиков.Непростые, но интересные задачи научат логически рассуждать и нестандартно мыслить.
Читем онлайн Головоломки. Выпуск 2 - Яков Перельман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7

Яков Исидорович Перельман

Головоломки. Часть вторая

Задачи со спичками

1. Из шести три

Перед вами (рис. 1) фигура, составленная из 17 спичек. Вы видите в ней 6 одинаковых квадратов. Задача состоит в следующем: нужно убрать 5 спичек, не перекладывая остальных, так, чтобы осталось всего 3 квадрата.

Рис. 1

2. Оставить пять квадратов

В решетке из спичек, представленной на рис. 2, нужно так убрать 4 спички, не трогая остальных, чтобы осталось 5 квадратов.

Рис. 2

3. Оставить четыре квадрата

Из той же фигуры (рис. 2) так извлеките 8 спичек, не трогая других, чтобы оставшиеся спички составили 4 одинаковых квадрата.

4. Оставить три квадрата

В той же решетке (рис. 2) так уберите 6 спичек, не перекладывая остальных, чтобы осталось всего 3 квадрата.

5. Оставить два квадрата

И наконец, в той же фигуре (рис. 2) так уберите 8 спичек, не трогая остальных, чтобы осталось всего лишь 2 квадрата.

6. Шесть четырехугольников

В фигуре, представленной на рис. 3, нужно так переложить 6 спичек с одного места на другое, чтобы образовалась фигура, составленная из 6 одинаковых четырехугольников.

7. Из дюжины спичек

Из 12 спичек нужно составить фигуру, в которой было бы три одинаковых четырехугольника и два одинаковых треугольника.

Как это сделать?

Рис. 3

8. Из полутора дюжин

Из 18 спичек нужно сложить два четырехугольника так, чтобы площадь одного была втрое больше площади другого. Спички, как и во всех предыдущих задачах, переламывать нельзя. Оба четырехугольника должны лежать обособленно, не примыкая друг к другу.

9. Два пятиугольника

Если вам удалось решить предыдущую задачу, попытайтесь решить такую головоломку.

Из 18 спичек сложить два пятиугольника так, чтобы площадь одного была ровно втрое больше площади другого. Остальные условия те же, что и в предыдущей задаче.

10. Из 19 и из 12

На рис. 4 вы видите, как можно 19 целыми спичками ограничить шесть одинаковых участков.

А можно ли ограничить шесть одинаковых участков – хотя бы и иной формы -12 целыми спичками?

Рис. 4

Решения задач 1-10

1. Решение этой задачи на рис. 5.

Рис. 5

2—5. Решение задачи 2 показано на рис. 6, задачи 3 – на рис. 7 и 8, задачи 4 – на рис. 9, задачи 5 – на рис. 10.

Рис. 6

Рис. 7

Рис. 8

Рис. 9

Рис. 10

6. Смотри на рис. 11.

Рис. 11

7. Решение задачи 7 показано на рис. 12. Это равносторонний шестиугольник (но не правильный, поскольку его углы не равны).

Рис. 12

8. Решение этой задачи показано на рис. 13. Площадь верхней фигуры образуют два квадрата, каждый со сторонами в одну спичку. Нижний четырехугольник представляет собой параллелограмм, высота которого AB = 11/2 спички. Площадь параллелограмма по правилам геометрии равна его основанию, умноженному на высоту: 4 х 11/2 = 6, т. е. втрое больше площади верхнего четырехугольника.

9—10. Решения задач 9 и 10 наглядно показаны на рис. 14 и 15.

Рис. 13

Рис. 14

Рис. 15

Задачи с квадратами

1. Пруд

Имеется квадратный пруд (рис. 1). По углам его, близ самой воды, растет 4 старых развесистых дуба. Пруд понадобилось расширить: сделать вдвое больше по площади, сохранив квадратную форму. Но вековые дубы трогать не хотят. Можно ли расширить пруд до требуемых размеров так, чтобы все 4 дуба, оставаясь на своих местах, оказались на берегах нового пруда?

Рис. 1. Задача о пруде

2. Паркетчик

Паркетчик вырезал квадраты из дерева и проверял свою работу, сравнивая длины их сторон (рис. 2). Если все четыре стороны были равны, то он считал квадрат вырезанным правильно.

Надежна ли такая проверка?

Рис. 2

3. Другой паркетчик

Другой паркетчик проверял свою работу иначе. Он мерил не стороны квадратов, а их диагонали (т. е. те косые линии, которые, перекрещиваясь, соединяют углы фигуры). Если обе диагонали оказывались равными, паркетчик считал квадрат вырезанным правильно.

Вы тоже думаете, что такая проверка правильна?

4. Третий паркетчик

Третий паркетчик при проверке квадратов убеждался в том, что все 4 части, на которые диагонали разделяют друг друга (рис. 3), равны между собой. По его мнению, это доказывало, что вырезанный четырехугольник есть квадрат. Прав ли он?

Рис. 3

5. Белошвейка

Белошвейке нужно отрезать от полотна несколько квадратных кусков. Свою работу она проверяет тем, что перегибает четырехугольный кусок по диагонали и смотрит, совпадают ли его края. Если совпадают, значит, решает она, отрезанный кусок имеет в точности квадратную форму.

Так ли это?

6. Еще белошвейка

Подруга нашей белошвейки не довольствовалась описанным способом проверки. Отрезанный четырехугольник она перегибала сначала по одной диагонали, затем, расправив полотно, – по другой. И только если края фигуры совпадали в обоих случаях, считала квадрат вырезанным правильно.

Что вы скажете о такой проверке?

7. Затруднение столяра

У молодого столяра имеется пятиугольная доска, изображенная на рис. 4. Вы видите, что она как бы составлена из квадрата и приложенного к нему треугольника, который вчетверо меньше этого квадрата. Столяру нужно, ничего не убавляя от доски и ничего к ней не прибавляя, превратить ее в квадратную. Для этого необходимо, конечно, доску предварительно распилить на части. Столяр так и намерен сделать, но он желает распилить доску не более чем по двум прямым линиям.

Рис. 4. Затруднение столяра

Возможно ли двумя прямыми линиями разрезать нашу фигуру на такие части, из которых можно было бы составить квадрат? И если возможно, то как это сделать?

8. Все человечество внутри квадрата

В настоящее время (1924 г.) на всем земном шаре насчитывается 1800 миллионов человек: 1 800 000 000.

Представьте, что все люди, живущие на свете, собрались толпой на каком-то ровном месте. Вы хотите поместить их на квадратном участке, отводя по квадратному метру на каждые 20 человек (плотно прижавшись друг к другу, 20 человек смогут поместиться на таком квадрате).

Попробуйте, не вычисляя, прикинуть, квадрат какого размера понадобился бы для этого. Достаточно ли будет, например, квадрата со стороной 100 км?

9. Сомнительные квадраты

Учитель черчения задал школьнику работу: начертить два равных квадрата и заштриховать их. Школьник выполнил работу так, как показано на рис. 5. Он был уверен, что это квадраты и притом равные.

Почему он так думал?

Рис. 5

10. Темные пятна

Другой школьник должен был начертить несколько рядов черных квадратов, разделенных белыми полосками. Вот как он выполнил эту работу – рис. 6.

Вы видите, однако, что близ углов квадратов, в том месте, где пересекаются белые полоски, имеются темноватые пятна. Школьник уверял, что он их не делал.

Откуда же они взялись?

Рис. 6

Решения задач 1-10

1. Расширить площадь пруда вдвое, сохранив его квадратную форму и не тронув дубов, вполне возможно. На рис. 7 показано, как это сделать: надо копать так, чтобы дубы оказались против середины сторон нового квадрата. Легко убедиться, что по площади новый пруд вдвое больше имевшегося: достаточно провести диагонали в прежнем пруде и вычислить площадь образующихся при этом треугольников.

Рис. 7

2. Такая проверка недостаточна. Четырехугольник мог выдержать это испытание, и не будучи квадратом. Вы видите на рис. 8 примеры четырехугольников, у которых все стороны равны, но углы не прямые. В геометрии фигуры с четырьмя равными сторонами называются ромбами. Каждый квадрат есть ромб, но не каждый ромб есть квадрат.

Рис. 8

3. Эта проверка так же ненадежна, как и первая. Конечно, диагонали квадрата равны, но – как видно из фигур, представленных на рис. 9, – не всякий четырехугольник с равными диагоналями есть квадрат.

Рис. 9

Паркетчикам следовало бы применять к каждому вырезанному четырехугольнику обе проверки сразу – тогда они были бы уверены, что работа сделана правильно. Всякий ромб, у которого диагонали между собой равны, есть непременно квадрат.

1 2 3 4 5 6 7
На этой странице вы можете бесплатно читать книгу Головоломки. Выпуск 2 - Яков Перельман бесплатно.
Похожие на Головоломки. Выпуск 2 - Яков Перельман книги

Оставить комментарий