Шрифт:
Интервал:
Закладка:
Для тех читателей, которым легче воспринимать пространственную информацию, давайте представим задачу в виде круговых диаграмм - такая форма представления использовалась при рассмотрении силлогизмов в главе о рассуждениях. Пусть один круг представляет всех на свете банковских кассиров, а другой - всех феминисток. Эти два круга должны наложиться друг на друга, потому что некоторые банковские кассиры являются одновременно феминистками. На рис. 7.3 область пересечения кругов заштрихована. Как видно из рис. 7.3, заштрихованная область, которая представляет всех людей, одновременно являющихся кассирами и феминистками, должна быть меньше, чем круг, представляющий всех кассиров, потому что существуют кассиры, которые не являются феминистками.
Теперь, когда вы поняли, в чем заключается ошибка конъюнкции, попробуйте ответить на другой вопрос (также взятый из работы Tversky amp; Kahneman, 1983):
В Британской Колумбии проводилось обследование здоровья мужчин из выборки, где были представлены все возрастные группы и профессии.
Пожалуйста, приведите свои оценочные значения следующих величин:
Какова процентная доля обследованных мужчин, которые перенесли один или более инфарктов?
Рис. 7.3. Два круга представляют «всех феминисток» и «всех банковских кассиров». Пересечение этих двух кругов представляет тех людей, которые одновременно являются феминистками и банковскими кассирами. Поскольку существуют феминистки, которые не работают кассирами, и кассиры, которые не являются феминистками, область пересечения кругов должна быть меньше, чем каждый из них в отдельности.
Какова процентная доля обследованных мужчин в возрасте старше 55 лет, которые перенесли один или более инфарктов? (р. 308)
Теперь прекратите чтение и вставьте на пропущенные места свои оценочные цифры.
Более 65% респондентов считали, что процентная доля мужчин, которые старше 55 лет и перенесли инфаркт, будет больше, чем процент всех мужчин, которые перенесли инфаркт. Вы заметили, что это еще один пример ошибки конъюнкции? Вероятность совместного появления двух случайных событий не может быть выше, чем вероятность появления только одного из них.
Совокупный риск - применение правила «или»
Очевидно, что вероятность случайно ответить правильно на три вопроса, при наличии пяти вариантов ответов на каждый из вопросов, будет значительно меньше, чем вероятность правильно угадать ответ на один вопрос. Ясно также, что вероятность правильно угадать ответ хотя бы на один вопрос из трех будет выше, чем вероятность правильно угадать ответ, когда вопрос всего один. До сих пор я специально подбирала простые примеры. Давайте выясним, как применять рассмотренные принципы в реальной жизненной обстановке.
В реальной жизни риск, как правило, связан с многократным попаданием в рискованную ситуацию. Рассмотрим вождение машины. Вероятность попасть в аварию при одной поездке на машине очень невелика. Но что будет с вероятностью аварии, если вы совершаете сотни или тысячи поездок? Согласно правилу «или», она будет равна вероятности аварии при первой, или при второй, или… при n-й поездке. Шекли (Shaklee, 1987) провела интересное исследование того, как люди понимают концепцию совокупного риска. Она предложила субъектам значения вероятностей, которые соответствовали риску наводнения в течение года. Затем субъектам надо было оценить вероятность наводнения в течение одного месяца, 5 лет, 10 лет и 15 лет. Только 74% субъектов понимали, что вероятность наводнения увеличивается, если рассматривать интервал времени более одного года. Среди тех, кто дал более высокие оценки вероятности наводнения за интервалы более одного года, большинство серьезно недооценивали совокупную вероятность.
Давайте рассмотрим аналогичный пример. При применении метода контрацепции, эффективного на 96% из расчета на год, в среднем у четырех женщин из каждых ста, пользующихся этим методом, в течение года наступит беременность. Предполагая, что уровень неудач не зависит от времени, следует ожидать, что при применении этого метода в течение 15 лет забеременеет больше женщин, а при его применении в течение более 15 лет количество беременностей будет еще больше (Shaklee, 1987). При опросе студентов колледжа оказалось, что только 52% студентов понимало, что количество ожидаемых беременностей возрастает со временем, а большинство из них существенно недооценивало число беременностей.
Вероятно, идея, которую я пытаюсь донести до читателя, уже ясна: при определении риска важно понимать, относится ли предлагаемое вам значение вероятности к какой-либо единице времени (например, год), и осознавать, что совокупный риск увеличивается при повторении рискованной ситуации. Создается впечатление непонимания многими того, что совокупные риски выше, чем однократные.
Ожидаемые значения
Какую из следующих двух ставок вы бы сделали, если было бы можно выбрать лишь одну из них?
1. Большая дюжина: игра стоит один доллар. Если, бросив пару игральных костей, вы получите 12 очков, вам вернут ваш доллар плюс еще 24 доллара. Если выпадет любая другая сумма, вы проиграли свой доллар.
2. Счастливая семерка, игра стоит один доллар (так же, как в предыдущем случае). Если, бросив пару игральных костей, вы получите в сумме 7 очков, вам вернут ваш доллар плюс еще б долларов. Если выпадет любая другая сумма, вы проиграли свой доллар.
Теперь выберите либо ставку номер 1, либо ставку номер 2.
Большинство людей выбирает ставку номер 1, считая, что 24 доллара, которые они выиграют, если выпадет 12 оков, в четыре раза больше, чем 6 долларов, которые можно выиграть, если выпадет 7 очков, а денежная величина одинакова для каждой ставки. Давайте проверим, насколько правильны такие рассуждения.
Чтобы выяснить, какая из ставок выгоднее, надо рассчитать вероятность выигрыша и проигрыша в каждом из случаев. Существует формула, которая учитывает все эти значения и дает ожидаемое значение (ОЗ) выигрыша для каждой игры. Ожидаемое значение - это количество денег, которое можно ожидать выиграть при каждой ставке, если вы все время будете продолжать играть. Формула для расчета ожидаемого значения (ОЗ) имеет следующий вид:
ОЗ = (вероятность выигрыша) х (величина выигрыша) + (вероятность проигрыша) х (величина проигрыша).
Давайте вычислим ОЗ для первой ставки. Начнем с расчета вероятности выпадения 12 при броске пары игральных костей. Существует только один способ получить 12: когда на каждой из костей выпадет 6. Вероятность этого события при условии, что кости «честные», равна 1/6 х 1/б = 1/36 = 0,028. (Поскольку нас интересует вероятность выпадения 6 и на первой, и на второй кости, мы используем правило «и» и перемножаем вероятности.) Таким образом, выпадение 12 ожидается в 2,8% случаев. Чему равна вероятность, что 12 не выпадет? Поскольку вы уверены, что 12 либо выпадет, либо не выпадет (других исходов быть не может), можно вычесть 0,028 из 1. Вероятность того, что выпадет не 12, равна 0,972. (Это значение с небольшой ошибкой округления можно получить также, если рассчитать вероятности 35 остальных возможных исходов - каждая из них равна 1/36 - и сложить их.) Все исходы, возможные при броске пары игральных костей, показаны на рис. 7.4.
ОЗ (1-я ставка) = (вероятность выпадения 12) х (выигрыш) + (вероятность выпадения не 12) х (проигрыш)
ОЗ (1-я ставка) = 0,028 х $24 + 0,972 х (- $1) 03 (1-я ставка) = $0,672 - $0,97 03 (1-я ставка) = - $0,30
Давайте посмотрим, из чего состоит эта формула. Если выпадет 12, вы выиграете $24, которые дают величину выигрыша. Если выпадет любое другое число, вы потеряете доллар, который заплатили, чтобы вступить в игру, поэтому величина проигрыша равна $1. Вероятность выигрыша умножается на величину выигрыша. Вероятность проигрыша умножается на величину проигрыша. Затем эти два произведения складываются. ОЗ при такой ставке равно $0,30. Это означает, что в конечном счете, если вы будете продолжать играть в эту игру много раз, вы можете ожидать, что будете проигрывать в среднем по $0,30 при каждой игре. Конечно, при каждой игре вы можете или проиграть $1, или выиграть $24, но после множества игр вы проиграете в среднем по $0,30 за одну игру. Если вы сыграете 1000 раз, ставя каждый раз по доллару, то вы потеряете $300.
Сравним этот результат со второй ставкой. Чтобы рассчитать ОЗ для второй ставки, мы начнем с вычисления вероятности выпадения 7 очков при броске пары костей. Сколько существует способов получить 7, бросив пару костей? Семь очков получится, если выпадет 1 на первой кости и 6 на второй, 2 и 5, 3 и 4, 4 и 3, 5 и 2 или 6 и 1. Таким образом, существует 6 возможных способов получить 7 очков из 36 возможных исходов. Вероятность любого из этих исходов равна 1/6x 1/6 = 1/36. (Это вероятность получить, например, 1 на первой кости и 6 на второй кости.) Для определения вероятности того, что за первым выпавшим числом последует второе нужное число, вы должны применить правило «и». Поскольку теперь вас интересует вероятность выпадения 1 и 6, или 2 и 5, или 3 и 4, или 4 и 3, или 5 и 2, или 6 и 1, то следующим шагом должно быть применение правила «или». Поскольку существует 6 возможных комбинаций, вам надо сложить шесть раз по 1/6 (что, конечно, то же самое, что умножить 1/36 на 6). Таким образом, вероятность выпадения 7 очков при броске пары костей равна 6/36 (1/6 или 0,167). Вероятность выпадения любой другой суммы очков (не 7) равна 1 - 0,167 = 0,833. Теперь мы подсчитаем 03 для второй ставки:
- Психология мышления - Лидия Гурова - Психология
- 5 хороших минут осознанности, чтобы уменьшить стресс, перезагрузиться и обрести покой прямо сейчас - Джеффри Брэнтли - Менеджмент и кадры / Психология / Эзотерика
- Психология свободы: теория и практика - Елена Кузьмина - Психология
- Самоосвобождающаяся игра - Вадим Демчог - Психология
- Самоосвобождающаяся игра - Вадим Демчог - Психология
- Шесть шляп мышления - Эдвард де Боно - Психология
- Научиться быть счастливым - Тал Бен-Шахар - Психология
- Искусство помнить и забывать - Даниэль Лапп - Психология
- ЖЖизнь без трусов. Мастерство соблазнения. Жесть как она есть - Алекс Лесли - Психология
- Отказываюсь выбирать! Как использовать свои интересы, увлечения и хобби, чтобы построить жизнь и карьеру своей мечты - Барбара Шер - Психология