Шрифт:
Интервал:
Закладка:
На самом деле Гюнтер приводит заниженные цифры, поскольку новые колоды карт сложены по мастям в восходящем порядке, так что одно или два «идеальных» тасования могут привести к «идеальному» для бриджа раскладу (Alcock, 1981). («Идеальное» тасование происходит тогда, когда после снятия колоды карты при тасовании ложатся через одну из каждой половины.) И, конечно, при этих вычислениях не учитывалась возможность мошенничества, которое изменяет значение вероятности, поскольку все возможные комбинации карт перестают быть равновероятными. Рассмотрите две комбинации карт, изображенные на рис. 7.2. Если карты раздаются случайным образом, то равновероятны все возможные их комбинации. Эта тема также обсуждается в главе 8.
Рулетка
Рулетку часто считают аристократической игрой. Странно, что она завоевала такую репутацию, поскольку эта игра основана на чистой случайности. В отличие от большинства карточных игр, искусства игры в рулетку не существует. Как вам, вероятно, известно, при игре в рулетку маленький шарик катится по круглому колесу с пронумерованными разноцветными ячейками. Существует 18 красных ячеек, 18 черных и 2 зеленые. Игроки могут делать различные ставки. Можно поставить на то, что шарик попадет в красную ячейку. Какова вероятность этого события при условии, что вероятность попадания шарика в любую ячейку одинакова? Красными являются 18 из 38 ячеек (количество возможных исходов); поэтому вероятность попадания шарика в красную ячейку равна 18/38. Поскольку это число меньше, чем 0,5, мы понимаем, что шарик будет останавливаться в красной ячейке несколько реже, чем в половине случаев. Таким образом, если вы будете постоянно ставить на красное, вы будете проигрывать немного чаще, чем выигрывать. Предположим теперь, что вы ставите на черное. Вероятность выигрыша опять будет равна 18/38; и опять-таки, если вы будете все время ставить на черное, вы будете проигрывать чаще, чем выигрывать. Конечно, играя в рулетку, вы будете иногда выигрывать, а иногда проигрывать, но после многих ставок — в достаточно протяженном интервале времени — вы проиграете.
Шансы или вероятность выигрыша в любом казино всегда распределяются в пользу «хозяев», иначе казино не получали бы прибыли. Тем не менее, одному человеку удалось «обыграть хозяев» в рулетку. Одним из людей, которых я очень уважаю, является Эл Гиббс, ученый, известный своими работами в Лаборатории реактивного движения в Пасадене, штат Калифорния, где выполняются многие работы по программе космических исследований США. Когда он был студентом, он воспользовался своими знаниями теории вероятностей и, играя в рулетку в клубе «Пионер» в Рено, увеличил свое состояние со 125 долларов до $6300. Вот как он это сделал: Гиббс знал, что, несмотря на то, что выпадение любого номера при игре в рулетку равновероятно, все устройства, сделанные руками человека, имеют недостатки. Из-за этого некоторые номера выпадают чаще других. Чтобы определить номера, которые выпадали чаще других, Гиббс вместе со своим другом записал результаты 100 000 запусков рулетки. На эти номера они и стали ставить. К сожалению, никто из нас не сможет повторить его успех, потому что с тех пор колеса стали ежедневно разбирать и собирать заново из других частей. Поэтому, несмотря на то, что каждое колесо остается неидеальным, каждый день его несовершенства меняются.
Вычисление вероятности событий с несколькими возможными исходамиНас часто интересует вероятность одновременного наступления нескольких событий, например выпадения двух орлов при двух бросках монеты или по крайней мере одной шестерки при двух бросках игральной кости. Ситуации такого рода называются ситуациями с несколькими возможными исходами.
Использование древовидных диаграмм
Хотя довольно легко понять, что вероятность выпадения орла при одном броске «честной» монеты равна? интуитивно определить вероятность выпадения четырех орлов при четырех бросках «честной» монеты несколько труднее. Хотя пример с монетой может показаться искусственным, он хорошо подходит для объяснения сочетания вероятностей при нескольких попытках. Давайте произведем расчеты. (Следите за моими рассуждениями, даже если вы панически боитесь математики. Если вы поработаете над примерами, вычисления и математические рассуждения покажутся вам довольно простыми. Не надо восклицать, взглянув на следующие несколько цифр: «Нет, ни в коем случае, я это просто пропущу». Важно уметь думать с числами и о числах.)
При первом броске может наступить лишь один из двух возможных исходов; орел (О) или решка (Р). Что произойдет, если монету бросят дважды? Существует четыре возможных исхода: орел оба раза (ОО), орел в первый раз и решка во второй раз (ОР), решка в первый раз и орел во второй раз (РО) и решка оба раза (РР). Поскольку существует четыре возможных исхода и лишь один способ выпадения двух орлов, то вероятность этого события равна 1/4 (опять-таки мы предполагаем, что монета — «честная», т. е. выпадение орла и решки равновероятно). Существует общее правило для вычисления вероятности совместного появления нескольких событий в любой ситуации — правило «и». Если вы хотите найти вероятность совместного появления первого и второго события (орел при первом и при втором броске), надо перемножить вероятности наступления этих событий по отдельности. Применяя правило «и», мы находим, что вероятность появления двух решек при двукратном броске монеты равна 1/2 x 1/2 = 1/4. Интуитивно кажется, что вероятность совместного появления двух событий должна быть меньше, чем вероятность каждого из них в отдельности; так оно и оказывается.
Простой способ расчета этой вероятности получается, если представить все возможные события с помощью древовидной диаграммы. Древовидные диаграммы использовались в главе 4, когда мы проверяли правильность утверждений типа «если… то…». В этой главе мы припишем ветвям дерева вероятностные значения, чтобы определить вероятности различных сочетаний исходов. В последующих главах я еще вернусь к древовидным диаграммам при рассмотрении способов нахождения творческих решений задач.
При первом броске монеты она упадет или орлом, или решкой вверх. Для «честной» монеты выпадения орла и решки имеют одинаковую вероятность, равную 0,5. Давайте изобразим это следующим образом:
Когда вы бросаете монету второй раз, то либо за первым орлом последуют второй орел или решка, либо за первой решкой последуют второй орел или решка. Вероятности выпадения орла и решки при втором броске по-прежнему равны 0,5. Исходы второго броска изображаются на диаграмме в виде дополнительных ветвей дерева.
Как видно из диаграммы, существует четыре возможных исхода. Вы можете пользоваться этим деревом для нахождения вероятностей других событий. Чему равна вероятность получения одной решки при двух бросках монеты? Поскольку существует два способа, которыми можно получить одну решку (ОР или РО), ответ равен 2/4 или 1/2. Если вы хотите найти вероятность двух или более различных исходов, сложите вероятности всех исходов. Это называется правилом «или». По-другому эту задачу можно сформулировать так: «Чему равна вероятность получить или сначала орла, а потом решку (1/4), или сначала решку, а потом орла (1/4)?» Правильная процедура нахождения ответа состоит в том, чтобы сложить эти значения, в результате чего получается 1/2. Интуитивно кажется, что вероятность появления одного из нескольких событий должна быть больше, чем вероятность появления каждого из них; так оно и оказывается.
Правилами «и» и «или» можно пользоваться только тогда, когда интересующие нас события независимы. Два события независимы, если появление одного из них не влияет на появление второго. В рассматриваемом примере результат первого броска монеты никак не влияет на результат второго броска. Кроме того, для применения правила «или» необходимо, чтобы события были несовместимыми, т. е. не могли происходить одновременно. В рассматриваемом примере исходы являются несовместимыми, поскольку мы не можем получить и орла, и решку при одном броске.
Представление событий в виде древовидных диаграмм полезно во многих ситуациях. Давайте расширим наш пример. Предположим, что мужчина в полосатом костюме с длинными, подкрученными вверх усами и бегающими маленькими глазками останавливает вас на улице и предлагает сыграть на деньги, бросая монету. Он все время ставит на орла. При первом броске монета падает орлом вверх. При втором броске происходит то же самое. При третьем броске опять выпадает орел. Когда вы начнете подозревать, что у него «нечестная» монета? У большинства людей сомнения возникают при третьей или четвертой попытке. Вычислите вероятность выпадения одних орлов при трех и четырех бросках «честной» монеты (вероятность выпадения орла равна 0,5).
- Психология критического мышления - Дайана Халперн - Психология
- Психология и педагогика - Сергей Самыгин - Психология
- Психология познания: методология и методика познания - Евгений Соколков - Психология
- Российская психология в пространстве мировой науки - Ирина Анатольевна Мироненко - Прочая научная литература / Психология / Науки: разное
- Патопсихология - Блюма Зейгарник - Психология
- Психология мышления - Лидия Гурова - Психология
- Психология свободы: теория и практика - Елена Кузьмина - Психология
- Психология развития и возрастная психология: конспект лекций - О. Ларина - Психология
- Психология межкультурных различий - Владимир Кочетков - Психология
- Аналитическая психология. Тавистокские лекции - Карл Юнг - Психология