Рейтинговые книги
Читем онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 84 85 86 87 88 89 90 91 92 ... 140

Несмотря на ограничения, наложенные интуиционистами на математику, и на критику интуиционистской философии представителями других направлений, в целом интуиционизм пошел математике на пользу. Он выдвинул на первый план вопрос «Что означает в математике существование?», впервые серьезно обсуждавшийся в связи с аксиомой выбора. Перефразируя Вейля, можно сказать; много ли проку от того, что мы знаем о существовании числа, обладающего теми или иными свойствами, если у нас нет возможности реализовать или вычислить его? Неограниченное, наивное использование закона исключенного третьего явно нуждается в пересмотре. Особенно важно, по-видимому, то, что интуиционизм отстаивал непременную вычислимость чисел и функций, существование которых доказано лишь тем, что предположение об их несуществовании приводит к противоречию. Узнать эти числа непосредственно — это то же самое, что жить рядом с другом, но это означает совсем иное, чем просто знать, что где-то в мире у тебя есть друг.

Противоборство логицистов и интуиционистов было лишь первой схваткой в разгоравшейся битве за обоснование математики. В борьбу вступали все новые участники, о которых речь еще впереди.

XI

Формализм и теоретико-множественные основания математики

Какое значение могут иметь жалкие остатки, немногочисленные, неполные, не связанные друг с другом единичные результаты, которые были выработаны интуиционистами, по сравнению с могущественным размахом современной математики!{129}

Давид Гильберт

Логицизм и интуиционизм — два направления, возникшие в первые годы XX в. и придерживавшиеся диаметрально противоположных взглядов на основания математики, — были лишь первыми признаками надвигающейся бури. Третье направление — формализм — сформировал и возглавил Давид Гильберт. Родоначальником четвертого (теоретико-множественного) направления в основаниях математики стал Эрнст Цермело.

В своем докладе [51] на II Международном математическом конгрессе, проходившем в 1900 г. в Париже (гл. VIII), Гильберт подчеркнул важность доказательства непротиворечивости математики. Он указал также, что желательно получить прямое доказательство полной упорядоченности вещественных чисел. Но из работ Цермело мы знаем, что полное упорядочение эквивалентно аксиоме выбора. Гильберт обратил также внимание математиков на необходимость доказательства гипотезы континуума, согласно которой не существует (количественного) трансфинитного числа, большего N0 и меньшего c. Еще до того, как обрели известность парадоксы теории множеств, доставившие немало хлопот математикам, и возникла дискуссия по поводу аксиомы выбора, Гильберт предвидел насущную необходимость решения всех этих проблем.

Суть своего подхода к основаниям математики, в том числе и к доказательству ее непротиворечивости, Гильберт изложил в 1904 г. в докладе на III Международном конгрессе математиков в Гейдельберге. Тогда он еще не имел серьезных работ, реализующих намеченную им программу. В последующие 15 лет логицисты и интуиционисты развили бурную деятельность в направлении, указанном этим докладом; однако Гильберт, мягко говоря, не был удовлетворен предложенными ими решениями проблем, потрясающих сами основания математики.

С логицизмом Гильберт разделался довольно спокойно. Его главное возражение против логицизма в докладе на конгрессе и в работе, опубликованной в том же 1904 г., сводилось к тому, что в ходе длительного и сложного развития логики целые числа оказались, хотя и неявно, вовлеченными в присущую ей систему понятий. Следовательно, занимаясь построением понятия числа, логика в действительности ходит по замкнутому кругу. Критиковал Гильберт и задание множеств по их свойствам: при таком определении множеств возникала необходимость различать высказывания и пропозициональные функции по типам, а теория типов требовала принятия сомнительной аксиомы сводимости. Гильберт разделял мнение Рассела и Уайтхеда о необходимости включения в математику бесконечных множеств. Но для этого потребовалась бы аксиома бесконечности, а Гильберт вместе с другими не считал ее аксиомой логики.

С другой стороны, философия интуиционизма также не устраивала Гильберта, поскольку интуиционисты отвергали не только бесконечные множества, но и обширные разделы анализа, опирающиеся на чистые теоремы существования, и он яростно нападал на интуиционизм. В 1922 г. он обвинил интуиционистов в том, что они «стремятся разрушить и изуродовать математику». В статье 1927 г. он выразил свой протест против интуиционизма следующим образом: «Отнять у математиков закон исключенного третьего — это то же самое, что забрать у астрономов телескоп или запретить боксерам пользование кулаками. Запрещение теорем существования и закона исключенного третьего почти равносильно полному отказу от математической науки» ([50], с. 383).

По поводу отношения Гильберта к интуиционизму Вейль сказал в 1927 г.: «То, что с этой [интуиционистской] точки зрения надежна лишь часть классической математики, причем далеко не самая лучшая, — горький, но неизбежный вывод. Гильберту была невыносима мысль об этой ране, нанесенной математике».

И логицизм, и интуиционизм Гильберт обвинял в том, что они не смогли доказать непротиворечивость математики. В работе 1927 г. Гильберт торжественно заявил:

Математика есть наука, в которой отсутствует гипотеза. Для ее обоснования я не нуждаюсь ни, как Кронекер, в господе боге, ни, как Пуанкаре [который считал, что доказать непротиворечивость системы, использующей математическую индукцию, невозможно], в предположении об особой, построенной на принципе полной индукции способности нашего разума, ни, как Брауэр, в первоначальной интуиции, наконец, ни, как Рассел и Уайтхед, в аксиомах бесконечности, редукции [сводимости] или полноты, которые являются подлинными гипотезами содержательного характера и, сверх того, вовсе не правдоподобными.

([50], с. 383.)

В 20-е годы XX в. Гильберт сформулировал свой собственный подход к обоснованию математики и до конца жизни работал над ним. Среди работ, опубликованных Гильбертом в 20-е годы и в начале 30-х годов, особое место по богатству идей занимает работа «О бесконечности» ([44]*, 1925), где он формулирует замысел своей теории: «Эта теория ставит своей целью установить определенную надежность математического метода» ([50], с. 340).

Первый из тезисов Гильберта состоял в том, что, поскольку логика, развиваясь, непременно включает в себя математические идеи и поскольку для сохранения классической математики нам неизбежно приходится привлекать внелогические аксиомы типа аксиомы бесконечности, правильный подход к математике должен включать понятия и аксиомы не только логики, но и математики. Кроме того, логика должна чем-то оперировать, и это «что-то» состоит из внелогических конкретных понятий (таких, как понятие числа), воспринимаемых интуитивно еще до того, как мы начинаем рассуждать логически.

Принятые Гильбертом логические аксиомы несущественно отличаются от аксиом Рассела, хотя Гильберт ввел больше аксиом, поскольку его не интересовало построение наиболее экономной системы аксиом логики. Но так как, согласно Гильберту, математика невыводима из логики (математика не следствие логики, а автономная научная дисциплина), то аксиоматика как логики, так и математики должна включать математические и логические аксиомы. Гильберт считал также, что математику надежнее всего рассматривать не как фактическое знание, а как формальную, т.е. абстрактную, дисциплину, занимающуюся преобразованием символов безотносительно к их значению (хотя неформально значение символов и их отношение к реальности также учитываются). Доказательства теорем должны сводиться к преобразованиям символов, производимым по определенным правилам логического вывода.

Чтобы избежать неоднозначности языка и бессознательного использования интуитивных представлений, приводящих к одним парадоксам, исключить другие парадоксы и достичь строгости доказательств и объективности, Гильберт счел необходимым записать все утверждения логики и математики в символической форме. Хотя символы и могли иметь некоторое интуитивно воспринимаемое значение, в предложенной Гильбертом трактовке математики они не нуждались в интерпретации. Некоторые символы могли даже означать бесконечные множества, поскольку Гильберт намеревался включить их в свою теорию, но в таком случае они оказались бы лишенными интуитивного образа. Такие «идеальные элементы», как их называл Гильберт, необходимы для построения всей математики; поэтому их введение обоснованно, хотя сам Гильберт считал, что в реальном мире существует лишь конечное число объектов: материя состоит из конечного числа элементов.

1 ... 84 85 86 87 88 89 90 91 92 ... 140
На этой странице вы можете бесплатно читать книгу Математика. Утрата определенности. - Морис Клайн бесплатно.

Оставить комментарий