Рейтинговые книги
Читем онлайн Беспамятство как исток (Читая Хармса) - Михаил Ямпольский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 81 82 83 84 85 86 87 88 89 ... 112

Вокруг ноля 289

единственный путь, каким возникает любая вещь, -- это ее причастность особой сущности, которой она должна быть причастна, и что в данном случае ты можешь назвать лишь единственную причину происхождения двух -- это причастность двойке. Все, чему предстоит сделаться двумя, должно быть причастно двойке, а чему предстоит сделаться одним -- единице2.

Но это как раз и значит, что всякое число возникает из единого как некоего качества. Двойка -- это такое единое качество, определяющее свойство двух состоять из двух единиц. Если принять такой взгляд на природу числа, то любое число создается качеством как чем-то единым, измеряется, в терминах Хармса, единицей.

Впрочем, чтобы существовать, как доказывал платоновский Парменид, само единство должно подвергнуться удвоению (об этом см. в предыдущей главе), оно должно, по словам Хармса, стать "троицей существования". Поэтому в конечном счете число возникает не только через единое, качество, но и через отрицание единого, его перечеркивание. Число поэтому -- это качество, возникшее от перечеркивания единичности. Единица лежит в основе числа, как что-то "снятое" этим числом. Единица позволяет "мерить" число, обусловливающее гибель единицы.

Единица как качество обусловливает существование человека как некоего целого, которое не может быть поделено на составляющие единицы. Хармс обращает особое внимание на внешнее начертание знака единицы:

Единица изображается нами значком в виде палочки. Значок единицы есть только наиболее удобная форма для изображения единицы, как и всякий значок числа. Так и мы есть только наиболее удобная форма нас самих (ПВН, 437).

Мы в такой же степени -- форма нашего качества, как знак единицы -форма качества единого. Почему форма "палочки", штриха -- наиболее удобная? Потому, что она сочетает в себе некую нерасчленимость, единство предельно простого графа со свойством выражать идею границы, деления, членения. Вспомним схему Рабана с разрезанным сердцем. Оно разрезано штрихом, имеющим форму единицы.

Хармс называет единицу качеством, которым "нам придется орудовать". Знак этого качества имеет форму вертикальной линии, штриха. Штрих, будучи графическим выражением перечеркивания, отрицания, как раз дает позитивное выражение негативности. Отсюда и определение сабли как "меры мира". Сабля -это оружие, это члени-тель, по форме имитирующий единицу, это острие, наносящее на поверхность разрез, делящее ее надвое. Это единое как делитель.

Когда Хармс иронически обращается к русской истории (в анекдоте об Иване Сусанине), он заменяет саблю колом, все той же единицей -- "палочкой". В одном из черновиков Хармс отдельно записыва

____________

2 Платон. Федон, 101 с/Пер. С. П. Маркиша//Платон. Соч.: В 3 т. Т. 2. М.: Мысль, 1970. С. 72.

290 Глава 10

ет слово КОЛодА (3, 219), выделяя КОЛ и А -- единицу и первую букву алфавита, включенные в состав слова, обозначающего множество. КОЛодА -- это пример того, как единица, укладываясь в некий объект, порождает множество.

2

Главное свойство единицы -- сохранять единство, одновременно обеспечивая членение, расщепление. Когда мы делим числовой ряд на единицы, мы укладываем ее в другие числа и регистрируем их. Накапливая единицы, мы создаем натуральный ряд чисел, который описывается формулой п+1, п+1+1, п+1+1+1 и т.д. Эта прогрессия чисел в принципе не ограничена и является наиболее распространенной моделью наших представлений о бесконечности. Хармс писал об этой беспредельно растущей линии, бесконечной прогрессии чисел:

Бесконечное, это прямая, не имеющая конца ни вправо, ни влево. Но такая прямая недоступна нашему пониманию. Ее прикосновение так нематериально, так мало, что собственно нет никакого прикосновения. Оно выражается точкой. А точка, это бесконечно несуществующая фигура (Логос, 118).

Хармс мыслит бесконечную прогрессию как ось времени, по отношению к которой наше прикосновение (момент настоящего) может пониматься как точка, как "бесконечно несуществующая фигура".

Понять хармсовское представление о натуральном ряде чисел -- значит понять его связь с "качеством" строящей его единицы. Единица, постоянно прибавляясь к концам этого ряда, одновременно маркирует собой точку, откуда этот ряд растет. Ряд этот начинается в единице, но не имеет конца. Хармс говорит о неуравновешенности такого ряда, в котором начало, "исток" не имеет симметричного (мы бы сказали "гомотипичного") полюса. Необходимость в уравновешивании этого асимметричного ряда заставляет человека продолжать ряд чисел и в другую сторону от единицы. Уравновешенность достигается тем, что теперь оба конца не имеют начала. В первоначальном, неуравновешенном варианте ряд чисел сохранял свою связь с единицей -- или с качеством единства. Связь эта опиралась на постулирование единства всего ряда и отмену этого единства каждой новой прибавляющейся единицей. Это сохранение единства и его одновременную отмену можно обозначить как качество -- "единичность":

Но порядок этот таков, что началом своим предполагает единство. Затем следует единство и еще единство и т. д. без конца (Логос, 119).

Поясню, что это значит. Когда я называю любое, сколь угодно большое число, я постулирую его как некое единство, то есть платоновское "качество". Но такое постулирование возможно потому, что это число имеет начало -единицу. Когда я прибавляю к этому числу еще одну единицу, я разрушаю единство, но тут же воссоздаю его снова -- в ином числе.

Вокруг ноля 291

Тогда же, когда я продлеваю ряд чисел в сторону отрицательных величин, числа как бы теряют свое основание в единице -- в том закрытом начале ряда, которое обеспечивает идентичность цифр. Теперь единица перестает быть началом ряда, но это значит, что она одновременно перестает обеспечивать и единство прогрессирующих числовых величин. На место единицы -- как некой основы -- попадает ноль, некое принципиально иное качество:

Точку соединения этих двух рядов, одного естественного и непостижимого, а другого явно выдуманного, но объясняющего первый, -- точку их соединения мы назвали нуль. И вот числовой ряд нигде не начинается и нигде не кончается. Он стал ничем (Логос, 120).

Изменение качества числового ряда связано с изменением его "основания". Теперь в основании его лежит ноль, а не единица, лежит нечто, что не может быть основанием, потому что воплощает в себе ничем не уравновешенную негативность.

Хармсовские спекуляции по поводу натурального ряда чисел, вероятно, связаны с характерным для него пониманием формы слова. Если слово перестает пониматься как линеарное образование, движущееся от начала к концу, то оно как бы взрывается, разрезается посередине, оно начинает расти из сердцевины. То же самое происходит с числовым рядом, когда мы его "уравновешиваем". Числовой ряд перестает расти от начала -- единицы, он начинает расти из "середины" -- и эта середина не может в данном случае обозначаться единицей. Она подменяется нолем -- как формой радикального отрицания. "Нуль" Хармса по своему положению в ряду напоминает семя слова. Он напоминает срединное семя, пузырь, выбухание и своими иными характеристиками:

Он стоит где-то в середине бесконечного ряда и качественно разнится от него. То, что мы назвали ничем имеет в себе еще что-то, что по сравнению с этим ничем есть новое ничто. Два ничто? Два ничто и друг другу противоречивые? Тогда одно ничто есть что-то. Тогда что-то, что нигде не начинается и нигде не кончается, есть что-то, содержащее в себе ничто (Логос, 120).

Эти рассуждения Хармса далеки от современной философии математики, они скорее напоминают пифагорейские упражнения. Математика для него не более чем модель, позволяющая описывать структуру дискурса, слова.

О каких двух "ничто" идет речь в рассуждении Хармса? Я вынужден сделать небольшой экскурс в историю ноля. По всей видимости, ноль возник около 1300 лет назад в Индии и окончательно утвердился в европейской системе счисления только в начале XVII века. Первоначально он, вероятно, использовался для переноса на бумагу калькуляций, производившихся на абаке, в России известной как счеты. Каждая струна абаки обозначала свой разряд чисел -- единицы, десятки, сотни и т.д. Тогда же, когда один из разрядов абаки пустовал, на письме было необходимо обозначить эту незаполненность неким знаком. Им стал ноль, У своих истоков ноль выступает как знак, обоз

292 Глава 10

качающий отсутствие иных математических знаков. По определению Ротмана, это знак отсылающий к отсутствию знаков, то есть это метазнак. Но самое парадоксальное и сбивающее с толку -- это то, что ноль, будучи знаком отсутствия знака, то есть не числом/а именно метазнаком, одновременно является все же и числом.

Если рассматривать ноль в ряду количественных числительных и счета, в котором каждой цифре соответствует некий объект, то ноль означает отсутствие такого соответствия. Но в ряду порядковых числительных ноль может быть числом, например в формуле 1 -- 1 = 0. В такой формуле 0 -- равноправное число среди прочих.

1 ... 81 82 83 84 85 86 87 88 89 ... 112
На этой странице вы можете бесплатно читать книгу Беспамятство как исток (Читая Хармса) - Михаил Ямпольский бесплатно.
Похожие на Беспамятство как исток (Читая Хармса) - Михаил Ямпольский книги

Оставить комментарий