Шрифт:
Интервал:
Закладка:
Однако Деана больше интересовали не эти нарушения, а фрагментарные способности, которые господин N сумел сохранить. Когда испытуемому показывали цифру 5 на несколько секунд, он понимал, что это цифра, а не буква, начинал считать от 1, пока не доходил до нужного числа, и в конце концов соображал, что это 5. Точно так же он поступал, когда его спрашивали, сколько лет его семилетней дочери. В своей книге «Числовое чутье», вышедшей в 1997 году (Dehaene, S., The Number Sense), Деан писал: «Похоже, он сразу понимал, какое количество хочет выразить, но не мог вспомнить нужное слово, не повторив всю последовательность чисел».
Кроме того, Деан обнаружил, что хотя господин N больше не мог читать, ему иногда удавалось приблизительно уловить смысл слов, которые ему показывали; например, когда он видел слово «ветчина», то говорил: «Это такое мясо». Деан решил проверить, есть ли у господина N похожее чувство чисел. Он показал ему цифры 7 и 8. Господин N тут же сказал, что число 8 больше – гораздо быстрее, чем если бы ему пришлось считать до нужного числа. Кроме того, он правильно определял, больше или меньше 55 различные числа, и ошибался только когда они были очень близки к 55.
Господина N Деан прозвал «Человек-Приблизительность». Человек-Приблизительность жил в мире, где в году было «примерно 350 дней», а в часе – «примерно 50 минут», времен года было пять, а десяток яиц оценивался как «штук шесть-десять». Деан несколько раз просил испытуемого сложить два и два и получал ответы от трех до пяти. Однако, отмечал ученый, «он ни разу не сказал откровенной чуши вроде “девять”».
В когнитивистике случаи повреждения мозга – это природные эксперименты. Если травма или недуг лишает человека какой-то способности, но не затрагивает другие, это доказывает, что они запрограммированы в разных нейронных сетях. В этом случае Деан выдвинул гипотезу, что за способность учиться сложным математическим процедурам и за грубое количественное чутье отвечают совсем разные участки мозга. Сведения о когнитивных расстройствах при поражениях мозга накапливались десятилетиями, и ученые заключили, что у нас есть какое-то числовое чутье, не зависящее от языка, памяти и логики в целом. Изучение когнитивных процессов, связанных с числами, стало крайне популярным направлением нейрофизиологических исследований, а Деан – один из исследователей, которые его возглавляют. Как сказала мне Сьюзен Кэри, профессор психологии из Гарварда, тоже изучающая когнитивные процессы, связанные с числами: «Это новое слово в науке. Если хочешь, чтобы математика, которой учат детей, имела смысл, нужно знать, как мозг воспринимает число – и знать на том уровне, который стремится понять Станислас».
Основную часть своей карьеры Деан посвятил разметке границ нашего числового чутья и ответу на головоломный вопрос, какие аспекты наших математических способностей врожденные, а каким мы учимся, и как эти две системы перекрываются и влияют друг на друга. Он подошел к задаче со всех мыслимых сторон. Совместно с французскими и американскими коллегами он провел эксперименты, выявляющие, как числа закодированы в сознании. Изучал математические способности животных, амазонских индейцев, лучших студентов-математиков Франции. Применял методы сканирования мозга, чтобы точно выяснить, где в бороздах и извилинах мозговой коры прячется умение считать. И еще он рассмотрел, в какой степени на трудность восприятия чисел влияет тот или иной язык.
Работы Деана затрагивают важнейшие темы изучения и преподавания математики. По его представлениям, все мы от рождения наделены математическим инстинктом, древним с эволюционной точки зрения. Чтобы стать арифметически грамотными, дети должны опираться на этот инстинкт, но еще им нужно отучиться от некоторых склонностей, которые были нужны нашим предкам-приматам, однако сегодня мешают усваивать математические навыки. И некоторые общества, как видно, особенно хорошо умеют заставлять детей это делать. И во Франции, и в США математическое образование то и дело переживает кризис. Математические навыки американских детей смотрятся очень бледно по сравнению с умениями их сверстников из Сингапура, Южной Кореи и Японии. Чтобы исправить положение, нужно ответить на вопрос, которым Деан занимается на протяжении почти всей своей профессиональной жизни: из-за какой особенности мозга считать иногда так просто, а иногда так сложно?
Деан и сам весьма одаренный математик. Он родился в 1965 году и вырос в Рубе – средних размеров промышленном городе близ франко-бельгийской границы (фамилия Деан – фламандская). Его отец был педиатр и одним из первых изучал плодный алкогольный синдром. Когда Деан был подростком, у него, по его словам, пробудилась страсть к математике, и он поступил в Высшую нормальную школу в Париже – известную тренировочную площадку для французской научной элиты. Интересы Деана в основном лежали в области компьютерного моделирования и искусственного интеллекта. Науки о мозге увлекли его после того, как он в восемнадцать лет прочитал книгу самого выдающегося французского нейробиолога Жан-Пьера Шанже «Нейронный человек», вышедшую в 1983 году (Changeux, J. P., L’homme Neuronal). Подход к изучению мозга, которого придерживался Шанже, намекал на соблазнительную возможность привести психологию в соответствие с нейрофизиологией. Деан познакомился с Шанже и стал вместе с ним разрабатывать абстрактные модели мышления и памяти. Кроме того, он сотрудничал с когнитивистом Жаком Меллером. В лаборатории Меллера он и встретил свою будущую жену Гислен Ламберц, исследовательницу когнитивной психологии детей до года.
Деан вспоминает, что Меллер «по счастливой случайности» занимался изучением восприятия чисел. Так Деан впервые столкнулся с явлением, которое впоследствии назвал «числовым чутьем». Деан ставил себе цель ответить на простой на первый взгляд вопрос: откуда мы знаем, что одни числа меньше или больше других? Если показать вам две арабские цифры, 4 и 7, и попросить назвать, какая из них обозначает, скажем, большее число, вы ответите «7» через долю секунды, и резонно предположить, что любые две цифры можно сравнить за такое же короткое время. Однако эксперименты Деана показали, что испытуемые отвечали на подобные вопросы быстро и точно, когда цифры обозначали числа, стоящие далеко друг от друга, например, 2 и 7, но думали дольше, если числа стояли близко, например, 5 и 6. Показатели становились хуже и при увеличении чисел: сравнить 2
- Квант. Путеводитель для запутавшихся - Джим Аль-Халили - Зарубежная образовательная литература / Прочая научная литература / Физика
- Изобретение прав человека: история - Линн Хант - Зарубежная образовательная литература / Публицистика / Юриспруденция
- История античной науки. Открытия великих ученых и мыслителей древности - Джордж Сартон - Зарубежная образовательная литература / Исторические приключения
- Как работает память. Наука помнить и искусство забывать - Лайза Дженова - Биология / Зарубежная образовательная литература
- Философия запаха. О чем нос рассказывает мозгу - Энн-Софи Барвич - Биология / Зарубежная образовательная литература / Психология
- Чудеса без чудес (С приложением описания химических опытов) - Валерий Васильевич Борисов - Зарубежная образовательная литература / Религиоведение / Химия
- Философия: Кому она нужна? - Рэнд Айн - Зарубежная образовательная литература
- Амур. Между Россией и Китаем - Колин Таброн - Прочая документальная литература / Зарубежная образовательная литература / Прочая научная литература / Прочие приключения / Публицистика / Путешествия и география
- В погоне за памятью. История борьбы с болезнью Альцгеймера - Джозеф Джебелли - Зарубежная образовательная литература / Здоровье
- Сила обоняния. Как умение распознавать запахи формирует память, предсказывает болезни и влияет на нашу жизнь - Иоганнес Фраснелли - Биология / Зарубежная образовательная литература