Шрифт:
Интервал:
Закладка:
Ортогона'льная систе'ма фу'нкций, система функций {(jn (x)}, n = 1, 2,..., ортогональных с весом r (х) на отрезке [а, b], т. е. таких, что
Примеры. Тригонометрическая система 1, cos nx, sin nx; n = 1, 2,..., — О. с. ф. с весом 1 на отрезке [—p, p]. Бесселя функции , где n = 1, 2,..., — положительные нули Jn(x), образуют для каждого n > — 1/2 О. с. ф. с весом х на отрезке [0, l ].
Если каждая функция j (х) из О. с. ф. такова, что (условие нормированности), то такая система функций называется нормированной. Любую О. с. ф. можно нормировать, умножив j (х) на число — нормирующий множитель.
Систематическое изучение О. с. ф. было начато в связи с методом Фурье решения краевых задач уравнений математической физики. Этот метод приводит, например, к разысканию решений Штурма — Лиувилля задачи для уравнения [r(х) у' ]' + q (x) y = lу, удовлетворяющих граничным условиям у (а) + hy'(a) = 0, y (b) + Hy' (b) = 0, где h и Н — постоянные. Эти решения — т. н. собственные функции задачи — образуют О. с. ф. с весом r (х) на отрезке [a, b ].
Чрезвычайно важный класс О. с. ф. — ортогональные многочлены — был открыт П. Л. Чебышевым в его исследованиях по интерполированию способом наименьших квадратов и проблеме моментов. В 20 в. исследования по О. с. ф. проводятся в основном на базе теории интеграла и меры Лебега. Это способствовало выделению этих исследований в самостоятельный раздел математики. Одна из основных задач теории О. с. ф.— задача о разложении функции f (x) в ряд вида , где {jп (х)} — О. с. ф. Если положить формально , где {jп (х)} — нормированная О. с. ф., и допустить возможность почленного интегрирования, то, умножая этот ряд на jп (х) r(х) и интегрируя от а до b, получим:
(*)
Коэффициенты Сп , называемые коэффициентами Фурье функции относительно системы {jn (x)}, обладают следующим экстремальным свойством: линейная форма наилучшим образом приближает в среднем эту функцию. Иными словами, средняя квадратичная ошибка с весом r(х):
(*)
имеет наименьшее значение по сравнению с ошибками, даваемыми при том же n другими линейными выражениями вида . Отсюда, в частности, получается т. н. неравенство Бесселя
Ряд с коэффициентами Сп , вычисленными по формуле (*), называется рядом Фурье функции f (x) по нормированной О. с. ф. {jn (x)}. Для приложений первостепенную важность имеет вопрос, определяется ли однозначно функция f (x) своими коэффициентами Фурье. О. с. ф., для которых это имеет место, называется полными, или замкнутыми. Условия замкнутости О. с. ф. могут быть даны в нескольких эквивалентных формах. 1) Любая непрерывная функция f (x) может быть с любой степенью точности приближена в среднем линейными комбинациями функций jk (x), то есть в этом случае говорят, что ряд сходится в среднем к функции f (x)]. 2) Для всякой функции f (x), квадрат которой интегрируем относительно веса r(х), выполняется условие замкнутости Ляпунова — Стеклова:
3) Не существует отличной от нуля функции с интегрируемым на отрезке [a, b ] квадратом, ортогональной ко всем функциям jn (x), n = 1, 2,....
Если рассматривать функции с интегрируемым квадратом как элементы гильбертова пространства, то нормированные О. с. ф. будут системами координатных ортов этого пространства, а разложение в ряд по нормированным О. с. ф. — разложением вектора по ортам. При этом подходе многие понятия теории нормированных О. с. ф. приобретают наглядный геометрический смысл. Например, формула (*) означает, что проекция вектора на орт равна скалярному произведению вектора и орта; равенство Ляпунова — Стеклова может быть истолковано как теорема Пифагора для бесконечномерного пространства: квадрат длины вектора равен сумме квадратов его проекций на оси координат; замкнутость О. с. ф. означает, что наименьшее замкнутое подпространство, содержащее все векторы этой системы, совпадает со всем пространством и т.д.
Лит.: Толстов Г. П., Ряды Фурье, 2 изд., М., 1960; Натансон И. П., Конструктивная теория функций, М. — Л., 1949; его же, Теория функций вещественной переменной, 2 изд., М., 1957; Джексон Д., Ряды Фурье и ортогональные полиномы, пер. с англ., М., 1948; Качмаж С., Штейнгауз Г., Теория ортогональных рядов, пер. с нем., М., 1958.
Ортогональное преобразование
Ортогона'льное преобразова'ние, линейное преобразование евклидова векторного пространства, сохраняющее неизменным длины или (что эквивалентно этому) скалярное произведение векторов. В ортогональном и нормированном базисе О. п. соответствует ортогональная матрица. О. п. образуют группу — т.н. группу вращений данного евклидова пространства вокруг начала координат. В трёхмерном пространстве О. п. сводится к повороту на некоторый угол вокруг некоторой оси, проходящей через начало координат О, если определитель соответствующей ортогональной матрицы равен +1. Если же этот определитель равен —1, то поворот дополняется зеркальным отражением относительно плоскости, проходящей через О и перпендикулярной оси поворота. В двумерном пространстве, т. е. в плоскости, О. п. определяет поворот на некоторый угол вокруг начала координат О или зеркальное отражение относительно некоторой прямой, проходящей через О. Используется О. п. при приведении к главным осям квадратичной формы. См. также Матрица, Векторное пространство.
Ортогональность
Ортогона'льность (греч. orthogōnios — прямоугольный, от orthós — прямой и gōnía — угол), обобщение (часто синоним) понятия перпендикулярности. Если два вектора в трёхмерном пространстве перпендикулярны, то их скалярное произведение равно нулю. Это позволяет обобщить понятие перпендикулярности, распространив его на векторы в любом линейном пространстве, в котором определено скалярное произведение, обладающее обычными свойствами (см. Гильбертово пространство), назвав два вектора ортогональными, если их скалярное произведение равно нулю. В частности, вводя скалярное произведение в пространстве комплекснозначных функций, заданных на отрезке [а, b ] формулой
,
где r(х) ³ 0, называют две функции f (x) и j(x), для которых (f, j)r = 0, то есть
,
ортогональными с весом r(х). Два линейных подпространства называется ортогональными, если каждый вектор одного из них ортогонален каждому вектору другого. Это понятие обобщает понятие перпендикулярности двух прямых или прямой и плоскости в трёхмерном пространстве (но не понятие перпендикулярности двух плоскостей). Термином ортогональные кривые обозначают кривые линии, пересекающиеся под прямым углом (измеряется угол между касательными в точке пересечения). См., например, ортогональные траектории в ст. Изогональные траектории.
Ортогональные многочлены
Ортогона'льные многочле'ны, специальные системы многочленов {рп (х)}; n = 0, 1, 2,..., ортогональных с весом r(х) на отрезке [а, b ] (см. Ортогональная система функций). Нормированная система О. м. обозначается через , а система О. м., старшие коэффициенты которых равны 1,— через . В краевых задачах математической физики часто встречаются системы О. м., для которых вес r(х) удовлетворяет дифференциальному уравнению (Пирсона)
- Большая Советская Энциклопедия (ЭЙ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ОБ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ЧХ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (СЫ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (УЗ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (КЗ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ДИ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (СЮ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ЦИ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (СЭ) - БСЭ БСЭ - Энциклопедии