Шрифт:
Интервал:
Закладка:
Все, что может быть предметом математического мышления, коль скоро назрела необходимость в создании теории, оказывается в сфере действия аксиоматического метода и тем самым математики. Проникая во все более глубокие слои аксиом… мы получаем возможность все дальше заглянуть в сокровенные тайны научного мышления и постичь единство нашего знания. Именно благодаря аксиоматическому методу математика, по-видимому, призвана сыграть ведущую роль во всем нашем знании.
Аналогичные мысли Гильберт высказывал и в 1922 г.:
Аксиоматический метод поистине был и остается подходящим и неоценимым инструментом, в наибольшей мере отвечающим духу каждого точного исследования, в какой бы области оно ни проводилось. Аксиоматический метод логически безупречен и в то же время плодотворен; тем самым он гарантирует полную свободу исследования. В этом смысле применять аксиоматический метод — это значит действовать, понимая, о чем идет речь. Если ранее, до аксиоматического метода, приходилось действовать наивно, слепо веря в существование определенных отношений, то аксиоматический метод устраняет подобную наивность, сохраняя все преимущества уверенности.
Возможно, создается впечатление, что математики приветствовали установление прочной, строгой основы своей науки. Однако математикам ничто человеческое не чуждо. И далеко не все математики с энтузиазмом приветствовали точную формулировку таких основных понятий, как иррациональное число, непрерывность, производная и интеграл. Многие не поняли новой терминологии и сочли точные определения своего рода причудами, отнюдь не обязательными для понимания математики и даже для строгих доказательств. Те, кто так считал, полагались на свою интуицию, несмотря на сюрпризы, преподнесенные открытием непрерывных, но не дифференцируемых функций и других логически правильных, но противоречащих интуиции математических объектов. Так, в 1904 г. Эмиль Пикар (1856-1941), говоря о строгости в теории дифференциальных уравнений с частными производными, заметил: «Истинная строгость плодотворна и этим отличается от другой строгости, чисто формальной и утомительной, бросающей тень на затрагиваемые ею проблемы». Шарль Эрмит (1822-1901) в письме к Томасу Яну Стильтьесу от 20 мая 1893 г. признавался: «С чувством непреодолимого отвращения я отшатываюсь от достойного всякого сожаления зла — непрерывных функций, не имеющих производных». Пуанкаре (1854-1912), с чьей философией математики нам предстоит познакомиться в следующей главе, жаловался; «В прежние времена новые функции вводились для того, чтобы их можно было применять. Ныне же строят функции, чтобы прийти в противоречие с выводами наших предшественников. Такие функции не годятся ни для чего иного».
Многие авторы тех определений и доказательств, ошибочность которых стала очевидной, принялись утверждать, будто имели в виду именно тот смысл, к которому привела строгая теория. К подобному приему прибегал даже такой выдающийся математик, как Эмиль Борель. Другие возражали против, как они говорили, «выискивания блох». В одной из своих работ, опубликованной в 1934 г., Годфри Гарольд Харди назвал строгость неотъемлемым элементом математики. Другие математики не понимали природы математической строгости и, опасаясь неприятностей, поносили ее. Некоторые даже поговаривали об анархии в математике. Новые идеи, в частности те, которые способствовали установлению математической строгости, математики воспринимали ничуть не менее предвзято, чем обычно люди воспринимают любые новшества.
Успехи в области оснований математики обнаружили еще одну сторону математических творений. Строгость не только удовлетворяла потребностям математики XIX в., но и позволила нам кое-что понять в развитии математики. Предполагалось, что обоснованные по последнему слову «математической техники» строгие структуры гарантируют «доброкачественность» математики, но эти гарантии оказались необоснованными. Ни одна теорема арифметики, алгебры или евклидовой геометрии не была изменена в результате пересмотра оснований, и только некоторые теоремы математического анализа пришлось сформулировать точнее. Например, прежде чем воспользоваться производной непрерывной функции, современным математикам приходится вводить дополнительную гипотезу о том, что эта функция дифференцируема. В действительности все новые аксиоматические структуры и строгость лишь подтвердили то, в чем и без того не сомневались математики. Аксиомы позволили доказать уже известные, а не какие-то новые теоремы, так как «старые» теоремы в подавляющем большинстве были правильными. В целом это означало, что в основе математики лежит не логика, а здравый смысл и интуиция. Строгость, по выражению Жака Адамара, лишь освящает то, что завоевано интуицией. Герман Вейль назвал строгость гигиеной, с помощью которой математик поддерживает здоровье и силу своих идей.
Как бы то ни было, к началу XX в. строгость снова стала играть заметную роль в математике и служить, хотя и с большим запозданием, гарантией прочности и обоснованности достижений, накопленных математикой за много столетий. Математики могли наконец во всеуслышание заявить, что исполнили свой долг по отношению к стандарту, установленному древними греками, и не без облегчения отметить, что, за исключением незначительных поправок, здание, построенное ими на эмпирической или интуитивной базе, теперь было в основном подкреплено логикой. При мысли об этом математиков охватывало ликование и даже самодовольство. Оглядываясь в прошлое, они могли указать несколько кризисных ситуаций (иррациональные числа, математический анализ, неевклидова геометрия, кватернионы) и поздравить себя с тем, что всякий раз им удавалось успешно разрешить возникавшую проблему.
На II Международном конгрессе математиков, состоявшемся в 1900 г. в Париже, с докладом на пленарном заседании выступил Анри Пуанкаре, соперничающий тогда с Гильбертом в борьбе за лидерство в математике. Несмотря на скептическое отношение к ценности некоторых усовершенствований в основаниях математики, Пуанкаре не без гордости заметил:
Достигли ли мы абсолютной строгости? Ведь на каждой стадии эволюции наши предки также верили в то, что достигли ее. Если они ошибались, то не ошибаемся ли и мы, подобно им?.. В новейшем анализе — если мы пожелаем взять на себя труд быть строгими — находят место силлогизмы и обращения к этой интуиции чистого числа, единственной интуиции, которая не может обмануть нас. Можно сказать, что ныне достигнута абсолютная строгость.
([1], с. 163-164.)Пуанкаре повторил эти преисполненные гордости слова в одном из очерков, составивших его книгу «Ценность науки» (1905) [1]. И эта гордость вполне понятна, если учесть, какая проницательность потребовалась, чтобы добиться строгости в различных разделах математики. Наконец-то математика обрела основания, которые с радостью приняли все, за исключением нескольких тугодумов. Математикам было чему радоваться.
Один из персонажей «Кандида» Вольтера философ доктор Панглосс даже в ожидании повешения твердит о «лучшем из миров». Так и математики, не ведая, что вскоре их ожидает взрыв ими же заложенного сокрушительного заряда, с энтузиазмом рассуждали о том, что достигли наилучшего из возможных состояний. Между тем тучи уже сгущались, и если бы математики, собравшиеся в 1900 г. на конгресс, не были так поглощены заздравными тостами, то они без труда бы заметили их.
Но и среди участников достопамятного конгресса 1900 г. нашелся человек, который прекрасно понимал, что в основаниях математики разрешены далеко не все проблемы. На этом конгрессе Давид Гильберт выступил с знаменитым докладом, где перечислил 23 проблемы [51], решение которых, по его мнению, девятнадцатое столетие завещало двадцатому. Первая из названных проблем состояла из двух частей. Георг Кантор ввел трансфинитные числа для обозначения мощности (числа элементов) бесконечных множеств. В этой связи Гильберт предложил доказать, что трансфинитное число, выражающее мощность множества всех вещественных чисел, является ближайшим к трансфинитному числу, выражающему мощность множества всех целых чисел. К этой проблеме мы вернемся в гл. IX.
Во второй части первой проблемы Гильберта говорилось о необходимости поиска метода, который позволил бы переупорядочить вещественные числа, чтобы их множество стало вполне упорядоченным. С понятием вполне упорядоченного множества мы подробнее познакомимся в дальнейшем, а пока достаточно лишь сказать, что если множество всех вещественных чисел вполне упорядочено, то в любой извлеченной из него подпоследовательности должен существовать первый элемент. При обычном упорядочении вещественных чисел это требование не выполняется: например, если мы рассмотрим все числа, которые больше, например, 5, то в этом подмножестве первый элемент отсутствует.
- Математика. Поиск истины. - Клайн Морис - Математика
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Владимир Артурович Левшин - Детская образовательная литература / Математика / Прочее
- DbfWebServer. Способ эффективной работы с таблицами DBFв среде Интернет - А. Шевелёв - Математика
- Человеческий риск (системные основы управления) - Владимир Живетин - Математика
- Геометрия, динамика, вселенная - Иосиф Розенталь - Математика
- Живой учебник геометрии - Перельман Яков Исидорович - Математика