Шрифт:
Интервал:
Закладка:
Как? Отгадайте!
ЗАДАЧА № 45 Три разведчикаВ не менее затруднительном положении оказались однажды трое пеших разведчиков, которым необходимо было перебраться на противоположный берег реки при отсутствии моста. Правда, на реке катались в челноке два мальчика, готовые помочь солдатам. Но челнок был так мал, что мог выдержать вес только одного солдата: даже солдат и один мальчик не могли одновременно сесть в лодку без риска ее потопить. Плавать солдаты совсем не умели.
Казалось бы, при таких условиях мог переправиться через реку только один солдат. Между тем все три разведчика вскоре благополучно очутились на противоположном берегу и возвратили лодку мальчикам.
Как они это сделали?
ЗАДАЧА № 46 Слишком много предковУ меня есть отец и мать. У моего отца и у моей матери тоже, конечно, были отец и мать. Значит, восходя к 3-му поколению, я нахожу у себя 4 предков.
Каждый из моих двух дедов и каждая из моих двух бабушек также имели отца и мать. Следовательно, в 4-м поколении у меня 8прямых предков. Восходя к 5-му, 6-му, 7-му и т. д. поколению назад, я нахожу, что число моих предков все возрастает и притом чрезвычайно обильно. А именно:
Вы видите, что 20 поколений назад у меня была уже целая армия прямых предков, больше полумиллиона. И с каждым дальнейшим поколением это число удваивается. Если считать, как обыкновенно принимается, по три поколения в столетие, то в начале нашей эры, 19 веков тому назад, на земле должно было жить несметное количество моих предков: можно вычислить, что число их должно заключать в себе 18 цифр!
Чем дальше в глубь веков, тем больше число моих предков должно возрастать. В эпоху первых фараонов численность их должна была доходить до умопомрачительной величины. В каменный век, предшествовавший египетской истории, моим предкам было уже, вероятно, тесно на земном шаре.
Но ведь и у вас, читатель, было столько же прямых предков. Прибавьте их к моим и присоедините еще предков всех своих знакомых, да прибавьте еще предков всех вообще людей, живущих ныне на земле, – и вы легко вообразите, в какой страшной тесноте жили наши предки: ведь для них буквально не хватало места на земном шаре! Не укажете ли вы им выход из этого затруднительного положения?
ЗАДАЧА № 47 В ожидании трамваяТри брата, возвращаясь из театра домой, подошли к рельсам трамвая, чтобы вскочить в первый же вагон, который подойдет. Вагон не показывался, и старший брат предложил подождать.
– Чем стоять здесь и ждать, – ответил средний брат, – лучше пойдем вперед. Когда вагон догонит нас, тогда и вскочим; а тем временем часть пути будет уже за нами – скорее домой приедем.
– Если уж итти, – возразил младший брат, – то не вперед по движению, а в обратную сторону: тогда нам, конечно, скорее попадется встречный вагон; мы раньше и домой прибудем.
Так как братья не могли убедить друг друга, то каждый поступил по-своему: старший остался ожидать на месте, средний пошел вперед, младший – назад.
Кто из трех братьев раньше приехал домой? Кто из них поступил благоразумнее?
ЗАДАЧА № 48 Куда девался гость?Можно ли посадить 11 гостей на 10 стульев так, чтобы на каждом стуле сидело по одному человеку?
Вы думаете – нельзя? Нет, можно: надо только умеючи взяться за дело.
Поступите так. Первого гостя посадите на первый стул. Затем попросите 11-го гостя сесть временно на тот же первый стул.
Усадив этих двух гостей на первый стул, вы усаживаете:
Как видите, остается свободным 10-й стул. На него вы и посадите 11-го гостя, который временно сидел на 1-м стуле.
Теперь вы счастливо вышли из затруднительного положения: у вас рассажены все 11гостей на 10-ти стульях.
А все-таки: куда девался один гость?
ЗАДАЧА № 49 Без гирьВам принесли на дом 10 килограммов сливочного масла. Вы желаете купить всего только 5 килограммов. У одного из ваших соседей нашлись весы с коромыслом, но гирь нет ни у вас, ни у разносчика и ни у кого из соседей.
Можете ли вы без всяких гирь отвесить 5 килограммов от 10 килограммов?
ЗАДАЧА № 50 На неверных весахПредставьте себе, что когда вы догадались, наконец, как отвесить масло без гирь, входит ваш сосед, ссудивший вам весы, и сообщает, что весы его очень ненадежны: на верность их полагаться нельзя.
Можете ли вы даже и на неверных весах, притом без гирь, отвесить правильно 5 килограммов от 10-килограммовой партии?РЕШЕНИЯ ЗАДАЧ №№ 41-50
Решение задачи № 41
На вопрос часового: «Зачем идешь?» – крестьянин дал такой ответ:
– Иду, чтобы быть повешенным вот на этой виселице.
Такой ответ поставил часового в тупик. Что он должен сделать с крестьянином? Повесить? Но тогда крестьянин сказал правду, за правдивый же ответ было приказано не вешать, а топить. Но и утопить нельзя: в таком случае крестьянин солгал, а за ложное показание предписывалось повесить.
Так часовой и не мог ничего поделать со сметливым крестьянином.
Решение задачи № 42
Вынимая жребий, осужденный поступил так: он вынул одну бумажку из ящика и, никому не показывая, разорвал се. Судьи, желая установить, что было написано на уничтоженной бумажке, должны были извлечь из ящика оставшуюся бумажку: на ней была надпись «С м е р т ь». Следовательно, – рассуждали судьи, – на разорванной бумажке была надпись «Ж и з н ь» (они ведь ничего не знали о заговоре). Готовя невинно осужденному верную гибель, враги обеспечили ему спасение.
Решение задачи № 43
Приговор был таков: учителю в иске отказать, но предоставить ему право вторично возбудить дело на новом основании – именно на том, что ученик выиграл свою первую тяжбу. Эта вторая тяжба должна быть решена уже бесспорно в пользу учителя.
Решение задачи № 44
Солдаты сели… друг к другу на колени! Выстроились по кругу и каждый сел на колени своего соседа. Вы думаете, что последнему солдату пришлось все-таки сидеть на болоте? Ничуть: при круговом расположении вовсе и нет этого «последнего» солдата: каждый опирается на колени своего соседа, и кольцо сидящих замыкается.
Если это представляется нам сомнительным, попробуйте с несколькими десятками товарищей устроить такое кольцо сидящих. Вы сможете на деле убедиться, что изобретательный солдат нашел действительный, а не кажущийся выход из положения.
Решение задачи № 45
Пришлось сделать 6 следующих поездок:
1-я поездка. Оба мальчики подъезжают к противоположному берегу и один из них привозит лодку к разведчикам (другой остается на том берегу).
2-я поездка. Мальчик, привезший лодку, остается на этом берегу, а в челнок садится первый солдат, который и переправляется на противоположный берег. Челнок возвращается с другим мальчиком.
3-я поездка. Оба мальчика переправляются через реку, и один из них возвращается с челноком.
4-я поездка. Второй солдат переправляется на противоположный берег. Челнок возвращается с мальчиком.
5-я поездка – повторение 3-й.
6-я поездка. Третий солдат переправляется на противоположный берег. Челнок возвращается с мальчиком, и дети продолжают свое прерванное катание по реке.
Теперь все три солдата находятся на другом берегу.
Решение задачи № 46
Нелепый результат, который мы получили, исчисляя своих предков, объясняется тем, что нами упущено из виду одно весьма простое обстоятельство. Мы не приняли в расчет, что наши отдаленные предки могут быть в кровном родстве между собой и, следовательно, иметь общих предков. Мой отец и моя мать, может, уже в 5-м или 6-м поколении назад имели общего деда, который, возможно, был и вашим предком, читатель. Это соображение разбивает все наши расчеты и уменьшает несметные полчища наших отдаленных предков до весьма скромной цифры, при которой не может быть речи о тесноте.
Решение задачи № 47
Младший брат, пойдя назад по движению, увидел идущий навстречу вагон и вскочил в него. Когда этот вагон дошел до места, где ожидал старший брат, последний вскочил в него. Немного спустя тот же вагон догнал шедшего впереди среднего брата и принял его. Все три брата очутились в одном и том же вагоне – и, конечно, приехали домой одновременно.
Однако благоразумнее всего поступил старший брат: спокойно ожидая на одном месте, он устал меньше других.
Решение задачи № 48
Исчезнувший гость – это второй гость, который был незаметно пропущен при распределении стульев: после 1-го и 11-го гостя мы сразу перешли к 3-му и следующим, миновав 2-го. Оттого-то нам и удалось разместить 11 гостей на 10 стульях, по одному человеку на каждом.
Решение задачи № 49
Задача сводится в сущности к тому, чтобы разделить 10 килограммов масла на две равные по весу части. Положите на каждую чашку по бумажному листу и накладывайте на них масла до тех пор, пока 10 килограммов распределятся поровну между ними. Ясно, что теперь на каждой чашке ровно 5 килограммов, – если только весы правильны.
Решение задачи № 50
И на неверных весах можно достичь того же, но более сложным путем. Сначала надо разделить десять килограммов масла на две части так, чтобы они были приблизительно (на глаз) равны. Затем берут одну из этих частей, кладут на чашку весов, – на другую же чашку накладывают камешков или чего угодно, до тех пор, пока чашки не будут уравновешены. Тогда снимают с чашки первую часть масла и вместо нее кладут вторую. Если окажется при этом, что чашки весов остаются на прежнем месте, то, значит, обе части масла равны, так как заменяют одна другую по весу. В таком случае, разумеется, каждая из них весит ровно 5 килограммов.
- Живой учебник геометрии - Перельман Яков Исидорович - Математика
- БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета - Перельман Яков Исидорович - Математика
- Загадки и диковинки в мире чисел - Яков Исидорович Перельман - Детская образовательная литература / Математика / Развлечения
- Системная безопасность гражданской авиации страны (анализ, прогнозирование, управление) - Владимир Живетин - Математика
- Математические диктанты. Числовые примеры. Все типы задач. Устный счет. 3 класс - Елена Нефедова - Математика
- Игра в имитацию. О шифрах, кодах и искусственном интеллекте - Алан Тьюринг - Прочая околокомпьтерная литература / Математика
- Социосферные риски - Владимир Живетин - Математика
- Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Владимир Артурович Левшин - Детская образовательная литература / Математика / Прочее
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Математическое и гуманитарное. Преодоление барьера - Владимир Успенский - Математика