Шрифт:
Интервал:
Закладка:
Итак, на протяжении XX века при изучении реальных сложных систем были сделаны следующие фундаментальные выводы:
а) Невозможно полное исчерпывающее описание системы; чем сложнее система, тем больше требуется различных, дополняющих друг друга описаний.
б) По имеющемуся состоянию сложной системы невозможно однозначным исчерпывающим образом реконструировать и описать ее историю.
в) Ни история системы, ни ее актуальное состояние не позволяют осуществить исчерпывающий прогноз ее будущего развития. Они дают основания для множества разнотипных описаний, предсказывающих разные типы развития. Однако и все множество этих прогнозов не содержит предсказания некоторых реализуемых впоследствии принципиально новых путей развития. Непредсказуемость – сущностная черта развития. В ряде случаев единственный способ узнать будущее реальной системы – это наблюдать и исследовать саму реальность, а не ее модели.
Ограничения идеальных систем
Открытиями ограничений в познании, связанных со свойствами реальных сложных систем, дело не закончилось. В XX веке также были сделаны важнейшие открытия ограничений систем другого типа – внутренних ограничений систем идеальных, абстрактных, служащих теоретической основой построения практической и познавательной деятельности.
«Успехи математики и математизированных областей знания приводили многих глубоких мыслителей к надежде на существование нескольких универсальных законов, из которых все остальные истины могут быть выведены чисто теоретически… После работы Геделя, однако, мы можем быть уверены в беспочвенности этих надежд… Метод дедуктивных выводов недостаточно мощен. Его не хватает даже на то, чтобы вывести из конечного числа принципов все истинные утверждения о целых числах, формулируемые на языке школьной алгебры» (Манин Ю. И., цит. по: [Волькенштейн, 1986, с. 181]). В своей теореме 1931 г., имеющей фундаментальное философское и общенаучное значение, Курт Гедель доказал, что внутри любой абстрактной системы выводного знания сколь угодно высокого уровня, начиная с определенного уровня сложности (с арифметики и выше), всегда имеются истинные утверждения, которые не могут быть доказаны средствами этой системы, и ложные утверждения, которые не могут быть опровергнуты. «Во всякой достаточно мощной системе истинность предложений системы неопределима в рамках самой системы» (формулировка А. Тарского, цит. по [Смаллиан, 1981, с. 236]). Для доказательства или опровержения этих положений требуется использование более богатой системы выводного знания, в которой в свою очередь также будут содержаться свои истинные, но недоказуемые положения, а также ложные, но неопровержимые, и т. д. до бесконечности. (Важно, что само утверждение о недоказуемости некоторых истинных утверждений является как раз доказуемым и истинным, что Гедель и показал). Из теоремы Геделя о неполноте следует, что невозможно теоретическим выводным путем доказать универсальность найденных законов или принципов и установить степень их истинности, ценности, существенности [Волькенштейн, 1986]. Эта теорема после своего опубликования в 1931 г. не только торпедировала глобальную программу полной формализации математики, осуществляемую Д. Гильбертом, доказав невозможность ее реализации, но оказала и продолжает оказывать мощное влияние на развитие современной науки.
Важно подчеркнуть, что теорема Геделя относится к теоретическим системам не ниже определенного уровня сложности. Как пишет Б. А. Кулик [1997, с. 32], неполнота не проявляет себя в «повседневной» арифметике, и ее не надо опасаться при подсчете семейного бюджета и даже при расчете орбит небесных тел. Пока теоретическая деятельность не развилась до определенного уровня сложности, у исследователей имелось достаточно оснований считать, что построение универсальной полной теоретической системы возможно и что именно к этому надо стремиться.
Алгоритмическая неразрешимость и ее следствия для психологии и педагогики
С теоремой Геделя связано открытое в XX веке чрезвычайно важное явление алгоритмической неразрешимости. Существуют классы корректно поставленных массовых проблем, допускающих применение алгоритмов, для которых тем не менее доказано отсутствие каких-либо алгоритмов их решения [Плесневич, 1974]. Поскольку основным предметом нашего обсуждения является не математика и кибернетика, а психология, мы приведем определение алгоритма, используемое в психологии, которое, тем не менее, содержательно очень близко к кибернетическому. Алгоритм определяется как общепонятная система точных предписаний, представляющая в общем виде решение всех задач определенного класса и позволяющая безошибочно решать любую задачу этого класса [Ланда, 1966; Талызина, 1969]. Алгоритм характеризуется: а) детерминированностью – однозначностью результата при заданных исходных данных; б) дискретностью – расчлененностью процесса на отдельные акты, возможность выполнения которых не вызывает сомнения; в) массовостью – способностью обеспечить решение любой задачи из класса однотипных задач. Тем не менее, строго доказано, что многие однотипные массовые задачи в принципе не имеют алгоритма своего решения.
Алгоритмическая неразрешимость массовой проблемы не означает неразрешимости той или иной единичной проблемы данного класса. Та или иная конкретная проблема может иметь решение, причем даже вполне очевидное, а для другой проблемы может существовать простое и очевидное доказательство отсутствия решения (доказательство того, что множество решений пусто). Но в целом данный класс проблем не имеет ни общего универсального алгоритма решения, применимого ко всем проблемам этого класса, ни ветвящегося алгоритма разбиения класса на подклассы, к каждому из которых был бы применим свой специфический алгоритм. Для решения отдельных подклассов задач нужно разрабатывать свои алгоритмы; для некоторых отдельных задач требуется разработка методов, вынужденно ограниченных, уникальных.
Алгоритмически неразрешимыми являются, например, проблема распознавания: остановится или нет произвольно выбранная машина Тьюринга (идеальная теоретическая модель любого программируемого устройства, на которой может быть реализован любой алгоритм) и вообще любая программа алгоритмического типа; проблема эквивалентности программ; тождества двух математических выражений; проблема распознавания того, можно ли из имеющихся автоматов собрать заданный автомат; а также множество других проблем, относящихся к топологии, теории групп и другим областям [Плесневич, 1974, с. 87–89].
Мы выдвигаем следующее положение: алгоритмическая неразрешимость как невозможность обобщенной системы точных предписаний по решению задач одного и того же типа имеет принципиальное значение для психологии и педагогики. Она означает наложение ряда принципиальных ограничений на основные компоненты деятельности человека или деятельности любой другой системы, обладающей психикой. Это ограничения на планирование деятельности, на ее осуществление, на контроль результатов, коррекцию.
Речь идет о невозможности эффективной универсальности, о невозможности эффективной инвариантности. В. Ф. Венда [1990] показал, что универсальность и эффективность методов связаны обратной зависимостью: чем метод более универсален, тем он менее эффективен. (Один из параметров эффективности метода – способность с его помощью либо решить задачу, либо доказать отсутствие решения за определенное число шагов.) Наиболее эффективны самые частные, самые специализированные методы – алгоритмы [Ивлев, 1998, с. 28]. За определенное число шагов такой специализированный метод всегда приводит к решению любой задачи того класса, который он покрывает. Но при этом он не может быть использован без той или иной переделки для решения задач даже соседних классов.
Неэффективная универсальность и инвариантность – возможна. Например, рекомендация «Если не получилось решить задачу одним способом, попробуй другим» может считаться универсальной, поскольку относится к решению задач в самых разных областях. Но вряд ли она достаточно эффективна, поскольку указывает лишь на возможность смены способа, но не на сам способ.
Возникает вопрос: как же люди решают конкретные задачи, относящиеся к классу алгоритмически неразрешимых? А ведь они их решают – и задачи на доказательства тождеств, и задачи на конструирование автоматов из имеющегося набора, и многие другие.
Решения алгоритмически неразрешимых задач и доказательства их правильности возможны и осуществляются очень часто. Но для каждого такого решения приходится каждый раз особым образом комбинировать различные элементы знания. С одной стороны, это элементы декларативного знания: аксиомы, постулаты, теоремы, описывающие некоторые свойства и связи изучаемой области. С другой стороны, это элементы процедурного знания: знания методов, стратегий, приемов. Сюда входят и общелогические, и предметно-специфические (domainspecific) методы, стратегии, приемы, которые «привязаны» к особенностям конкретной области. Все эти элементы вполне надежны в качестве «кирпичиков», из которых конструируется «здание» решения. Их можно и необходимо использовать, без них поиск решения станет значительно менее эффективным или вообще невозможным. Но проблема алгоритмической неразрешимости состоит в том, что нет общих универсальных правил, точных предписаний, как выбрать «кирпичики», нужные для конкретной задачи, и как сложить из них решение этой задачи. Построение «здания» решения задачи, относящейся к классу алгоритмически неразрешимых, с неизбежностью требует эвристических приемов и творчества: способ решения не выводится из более общего известного типового метода, а изобретается. А. Н. Кричевец пишет, что эти эвристические приемы невозможно описать точно, а можно только сказать, что тот, кто владеет ими, каждый раз вновь или даже впервые самостоятельно конструирует новый прием, нужный для конкретной ситуации – «вспомним, что всякий прием когда-то был создан впервые» [Кричевец, 1999(а), с. 39].
- Книга адекватных родителей. Принципы позитивного воспитания - Дас Сатья - Воспитание детей, педагогика
- 20 сложных ситуаций с детьми от 2 до 7 лет. Проверенные алгоритмы для родителей: как вести себя, чтобы не навредить, а помочь - Елена Сосорева - Воспитание детей, педагогика
- Мой родной дом. Программа нравственно-патриотического воспитания дошкольников - Наталья Арапова-Пискарева - Воспитание детей, педагогика
- Духовно-нравственное воспитание в теории и опыте православной педагогической культуры - Светлана Дивногорцева - Воспитание детей, педагогика
- Когда у вас особенный ребенок. Эффективные техники самопомощи для родителей особенных детей - Иванова Вера - Воспитание детей, педагогика
- Противодействие коррупционным преступлениям, связанным с мнимым посредничеством во взяточничестве - Роман Степаненко - Воспитание детей, педагогика
- Всё-всё-всё о воспитании детей - - - Воспитание детей, педагогика
- Всё-всё-всё о воспитании детей - Людмила Владимировна Петрановская - Воспитание детей, педагогика / Психология
- Общение с трудными детьми - Антон Семенович Макаренко - Воспитание детей, педагогика / Психология
- Общение с трудными детьми - Антон Макаренко - Воспитание детей, педагогика