Рейтинговые книги
Читем онлайн 1. Современная наука о природе, законы механики - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 51 52 53 54 55 56 57 58 59 60

Потенциальная энергия тяготения точечных масс M и m на расстоянии r друг от друга равна

U(r)=-GMm/r. (14.5)

Константа здесь выбрана так, чтобы потенциал исчезал на бесконечности. Конечно, эту же формулу можно применить и к электрическим зарядам, поскольку закон один и тот же:

U(r)=q1q2/4pe0r. (14.6)

Давайте теперь поработаем с одной из этих формул, по­смотрим, поняли ли мы их смысл.

Вопрос: С какой скоростью должна отправиться ракета с Земли, чтобы покинуть ее?

Ответ: Сумма кинетической и потенциальной энергий должна быть постоянной; покинуть Землю — значит удалиться от нее на миллионы километров; если у ракеты только-только хватает сил, чтобы покинуть Землю, то надо предположить, что там, вдалеке, ее скорость будет равна нулю и что на бесконечности она будет едва-едва двигаться. Пусть а — радиус Земли, а M— ее масса. Кинетическая плюс потенциальная энергии первона­чально были равны l/2 mv2 -GmM/a. В конце движения эти обе энергии должны сравняться. Кинетическую энергию в конце движения мы считаем нулевой, потому что тело еле движется (почти с нулевой скоростью), а потенциальная энергия равна величине GmM, деленной на бесконечность, т. е. опять нулевая. Значит, с одной стороны стоит разность двух нулей; поэтому квадрат скорости должен быть равен 2GM/a. Но GM/a2 это как раз то, что называют ускорением силы тяжести g. Итак,

v2=2ga.

С какой скоростью должен двигаться искусственный спут­ник, чтобы не падать на Землю? Мы когда-то решали эту зада­чу и получили v2=GM/a. Значит, чтобы покинуть Землю, нужна скорость, в Ц2 большая, чем скорость вращения спутника вокруг Земли. Иными словами, чтобы улететь с Земли, нужно вдвое больше энергии (энергия пропорциональна квадрату ско­рости), чем чтобы облететь вокруг нее. Поэтому исторически сначала были совершены облеты искусственных спутников вокруг Земли, для чего понадобились скорости около 7,8 км/сек. И только потом космические корабли были заброшены в миро­вое пространство; для этого потребовалось уже вдвое больше энергии, т. е. скорости около 11,2 км/сек.

Продолжим теперь наш обзор характеристик потенциальной энергии. Давайте рассмотрим взаимодействие двух молекул или двух атомов, например двух атомов кислорода. Когда они находятся далеко друг от друга, они притягиваются с силой, обратно пропорциональной седьмой степени расстояния, а при тесном сближении они сильно отталкиваются. Проинтегри­ровав минус седьмую степень расстояния, чтобы получить ра­боту, мы увидим, что потенциальная энергия U (функция рас­стояния между атомами кислорода) изменяется как минус шес­тая степень расстояния (на больших расстояниях).

Если мы чертим некую кривую потенциальной энергии U(r) (фиг. 14.3), то при больших r она выглядит как r-6, а при до­статочно малых r достигает минимума.

Фиг. 14.3. Потенциальная энер­гия взаимодействия двух атомов как функция расстояния между ними.

Минимум потенциальной энергии в точке r=d означает, что если мы сдвинемся от нее на малое расстояние, на очень малое расстояние, то произве­денная работа, равная изменению потенциальной энергии на этом промежутке, почти равна нулю, потому что на донышке кривой энергия почти не меняется. Значит, в этой точке сила равна нулю, и это есть точка равновесия. Условие равновесия можно высказать и иначе: для удаления из точки равновесия в любую сторону нужно затратить работу. Когда два атома кислорода расположены так, что никакой энергии из их силы взаимодейст­вия больше выжать нельзя, то они находятся в наинизшем энер­гетическом состоянии и промежуток между ними равен d. Так выглядит молекула кислорода, когда она не нагрета. При нагре­вании атомы колеблются и расходятся; их можно и совсем раз­вести, но для этого нужно определенное количество работы или энергии, равное разности потенциальных энергий в точках r=d и r=Ґ. При попытке сблизить атомы энергия быстро воз­растает вследствие их взаимного отталкивания.

Почему мы говорим о потенциальной энергии? Потому что идея силы не очень пригодна для квантовой механики, там более естественна идея энергии. Когда мы рассматриваем более сложные взаимодействия: ядерного вещества, молекул и т. д., то, хотя понятия силы и скорости «рассасываются» и исчезают, оказывается, что понятие энергии все же остается. Поэтому в книгах по квантовой механике мы находим кривые потенциаль­ной энергии, но очень редко увидим график силы взаимодей­ствия двух молекул, потому что те, кто изучает эти явления, больше уже привыкли думать об энергии, чем о силе.

Заметим еще, что, когда на тело одновременно действуют несколько консервативных сил, потенциальная энергия тела есть сумма потенциальных энергий от каждой силы. Это то, что мы утверждали и раньше, потому что, когда сила представляется векторной суммой сил, работа, производимая ею, равна сумме работ, производимых отдельными силами; поэтому ее можно представить как изменения потенциальных энергий от каждой силы по отдельности. Значит, общая потенциальная энергия равна сумме всех частей.

Мы можем обобщить это на случай системы многих тел, как, например, Юпитера, Сатурна, Урана и т. д. или атомов кислоро­да, азота, углерода и т. д., взаимодействующих друг с другом попарно, причем силы взаимодействия каждой пары консерва­тивны. В таких условиях кинетическая энергия всей системы есть просто сумма кинетических энергий всех отдельных атомов, или планет, или частиц, а потенциальная энергия системы есть сумма потенциальных энергий взаимодействия отдельных пар, рассчитанных в предположении, что других частиц нет. (На самом деле для молекулярных сил это неверно, и формула полу­чается несколько сложнее; для ньютонова тяготения это опре­деленно справедливо, а для молекулярных сил годится лишь как приближение. Можно, конечно, говорить о потенциальной энергии молекулярных сил, но она иногда оказывается более сложной функцией положений атомов, чем простая сумма по­парных взаимодействий.) Поэтому потенциальная энергия в частном случае тяготения представляется суммой по всем парам i и j членов — Gmimj/rij [как было показано в уравнении (13.14)]. Уравнение (13.14) выражает математически следующее предложение: общая потенциальная плюс общая кинетическая энергии не меняются со временем. Пусть себе различные планеты вращаются, обращаются и покачиваются, все равно если под­считать общую потенциальную и общую кинетическую энергии, то окажется, что их сумма всегда остается постоянной.

§ 4. Неконсервативные силы

Мы потратили немало времени, обсуждая свойства консер­вативных сил. Что же мы теперь скажем о неконсервативных силах? Мы хотим разобраться в этом вопросе более подробно, чем это обыкновенно делают, и показать, что неконсервативных сил не бывает! Оказывается, все основные силы природы, по-видимому, консервативны. Не подумайте, что это следствие из законов Ньютона. На самом деле, насколько представлял себе это сам Ньютон, силы могут быть неконсервативными, как, например, трение, которое кажется неконсервативным. Упот­ребляя слово «кажется», мы проводим современную точку зре­ния, которая доказывает, что все глубинные силы, все силы взаи­модействия между частицами на самом фундаментальном уровне суть силы консервативные.

Когда мы, например, анализируем систему наподобие боль­шого шарового звездного скопления (фотографию такого скоп­ления мы показывали) с тысячами взаимодействующих звезд, то формула для общей потенциальной энергии состоит просто из суммы слагаемых, каждое из которых выражает взаимодействие какой-то пары звезд; точно так же и кинетическая энергия есть сумма кинетических энергий всех отдельных звезд. Но шаровое скопление как целое движется и в пространстве, и окажись мы от него так далеко, что не смогли бы различать от­дельных деталей, мы бы приняли его за единый предмет. Если бы при этом к нему были приложены какие-то силы, то часть из них могла бы двигать его как целое и мы бы увидели, как центр этого тела движется. С другой стороны, прочие силы могли бы, если так можно выразиться, «тратиться» на повышение по­тенциальной или кинетической энергии «частиц» внутри «тела». Положим, например, что действие этих сил привело бы к расши­рению всего скопления и увеличению скоростей «частиц». Общая энергия «тела» на самом деле сохранялась бы. Но, глядя издалека нашими слабыми глазами, не различающими беспоря­дочных внутренних движений, мы бы видели только кинети­ческую энергию всего тела и нам бы казалось, что энергия не сохраняется, хотя все дело было бы в том, что мы не различаем деталей. Оказывается, что это всегда так: общая энергия Вселенной, кинетическая плюс потенциальная, если как следует посмотреть, всегда постоянна.

1 ... 51 52 53 54 55 56 57 58 59 60
На этой странице вы можете бесплатно читать книгу 1. Современная наука о природе, законы механики - Ричард Фейнман бесплатно.

Оставить комментарий