Шрифт:
Интервал:
Закладка:
Однако к 1831 г. Гаусс — если у него еще оставались какие-то сомнения относительно того, принимает ли он сам и другие математики комплексные числа, — преодолел эти сомнения и опубликовал работы по геометрическому представлению комплексных чисел. В работах, вышедших из-под пера Гаусса в тот год, все было сформулировано в явном виде. Гаусс не только предложил представлять число a + bi точкой на комплексной плоскости, но и дал геометрическое толкование сложения и умножения комплексных чисел (гл. IV). Он отметил, что к тому времени уже сложилось достаточно четкое понимание дробей, а также отрицательных и вещественных чисел. К комплексным же числам, несмотря на всю их значимость, отношение было в лучшем случае терпимым. Многие математики считали комплексные числа не более чем игрой с символами. Но «здесь [в геометрическом представлении] доказательство интуитивного понимания числа √−1 полностью обосновано и не нуждается более в необходимости относить указанные величины в область объектов, изучаемых арифметикой». Из этого высказывания видно, что сам Гаусс был согласен с интуитивным пониманием мнимых чисел. Гаусс утверждал также, что если бы величины 1, −1 и √−1 назывались соответственно не положительной, отрицательной и мнимой единицей, а прямой, обратной и побочной, то у людей не создавалось бы впечатления, что с этими числами связана какая-то мрачная тайна. По словам Гаусса, геометрическое представление дает истинную метафизику мнимых чисел в новом свете. Именно Гаусс ввел термин «комплексные числа» (в противоположность «мнимым числам» Декарта) и использовал для обозначения √−1 символ i. Однако Гаусс не обмолвился ни словом относительно того, что и он сам, и его современники свободно использовали вещественные числа, не имея никакого их обоснования, хотя этот момент был не менее важен.
В работе от 1840 г., о которой в дальнейшем мы расскажем несколько подробнее, Гаусс использовал комплексные числа более свободно, отметив, что «теперь их знают все». Но Гаусс заблуждался. Еще долго после того, как была создана (главным образом трудами Коши в первой трети XIX в.) теория комплекснозначных функций комплексного переменного, нашедшая применение в гидродинамике, профессора Кембриджского университета испытывали непреодолимое отвращение к «сомнительной» величине √−1 и с помощью громоздких построений стремились изгнать ее отовсюду, где она только появлялась.
В первой половине XIX в. логические основания алгебры характеризовались попросту их полным отсутствием. Основная проблема состояла в том, что вместо всех типов чисел в алгебре использовались буквы и все действия над этими буквами производились так, как если бы они обладали хорошо известными и интуитивно приемлемыми свойствами положительных целых чисел, такими, как коммутативность сложения (a + b = b + a) или ассоциативность умножения [(ab)c = a(bc)]. Полученные с использованием этих свойств результаты оставались верными при подстановке вместо букв любых чисел: отрицательных, иррациональных или комплексных. Но поскольку природа этих чисел оставалась непонятой, а их свойства не были логически обоснованы, такое использование буквенных символов вызывало справедливые нарекания. Создавалось впечатление, что алгебра буквенных выражений обладала своей собственной логикой, которая и была причиной непостижимой эффективности и правильности алгебры. Так в 30-х годах XIX в. математики столкнулись с проблемой обоснования операций, производимых над буквенными, или символическими, выражениями.
Впервые анализом этой проблемы занялся профессор математики Кембриджского университета Джордж Пикок (1791-1858). Он ввел различие между арифметической алгеброй и символической алгеброй. Первая оперировала с символами, представляющими положительные целые числа, и поэтому имела под собой прочную основу. При этом в арифметической алгебре допустимыми считались только операции, приводящие к положительным числам. Символическая алгебра, по мнению Пикока, перенимает правила арифметической алгебры, но распространяет их с положительных целых чисел на произвольные. Все результаты, полученные в рамках арифметической алгебры, выражения которой общи по виду, но частны по допускаемым ими значениям, остаются в силе и в символической алгебре, где помимо общности вида обретают общность и принимаемые рассматриваемыми выражениями значения. Так, равенство ma + na = (m + n)a выполняется в арифметической алгебре, — если a, m и n — положительные целые числа; следовательно, оно справедливо и в символической алгебре, где уже a, m и n могут быть какими угодно. Аналогично разложение бинома (а + b)n, справедливое при положительных целых n, остается в силе при всех n, если рассматривать его в общем виде безотносительно к последнему члену. Идея Пикока, известная под названием «принцип перманентности эквивалентных форм», была выдвинута им в 1833 г. в «Докладе о последних достижениях и современном состоянии некоторых областей анализа», прочитанном на заседании Британской ассоциации поощрения науки. Пикок догматически утверждал:
Если алгебраические формы эквивалентны, когда символы имеют общий вид, но могут принимать лишь частные [положительные целые] значения, то они эквивалентны и в том случае, когда символы не только имеют общий вид, но и могут принимать общие значения.
Свой принцип Пикок использовал, в частности, для обоснования операций над комплексными числами. Во избежание возможных нападок Пикок и сделал осторожную оговорку «…когда символы имеют общий вид». Тем самым его принцип не охватывал только числа 0 и 1, поскольку эти числа обладают необщими, специфическими свойствами.
Во втором издании своего «Трактата по алгебре» (1842-1845), (1-е изд. — 1830) Пикок вывел предложенный им принцип из аксиом. Он в явном виде сформулировал, что алгебра, подобно геометрии, является дедуктивной наукой. Следовательно, алгебраические методы должны основываться на полном наборе явно сформулированных законов, или аксиом, которым подчиняются операции, используемые в алгебраических процедурах. Символы операций не имеют (по крайней мере в алгебре как дедуктивной науке) иного смысла, кроме того, который придают им аксиомы. Так, сложение означает не более чем любой процесс, сопоставляющий двум элементам третий (который мы уславливаемся называть суммой первых двух элементов) и удовлетворяющий законам сложения. К числу законов, о которых говорит Пикок, относятся, например, коммутативный и ассоциативный законы для сложения и умножения или закон, состоящий в том, что если ac = bc и c ≠ 0, то а = b. Таким образом, принцип перманентности форм был обоснован принятием определенной системы аксиом.
Точка зрения на алгебру, утвержденная Пикоком, просуществовала на протяжении большей части XIX в. С небольшими видоизменениями она была принята Дунканом Ф. Грегори (1813-1844), Огастесом де Морганом и немецким математиком Германом Ганкелем (1839-1873).
По существу принцип перманентности форм был произвольным. Естественно, напрашивался вопрос: почему числа различных типов обладают теми же свойствами, что и целые числа? Принцип перманентности форм был санкционирован декретом как эмпирически правильный, но логически не обоснованный. Пикок, Грегори и де Морган, по-видимому, полагали, что алгебре можно придать смысл независимо от свойств вещественных и комплексных чисел. Вряд ли нужно говорить, что если какое-либо правило правой (или левой) руки назвать принципом, то его логическое обоснование от этого не улучшится. Но, как заметил епископ Беркли, «древние и глубоко укоренившиеся предрассудки нередко переходят в принципы, и не только сами утверждения, которые обретают силу и репутацию принципа, но и выводимые из них следствия принято считать во всех отношениях выделенными».
Принцип перманентности форм подходит к алгебре как к науке о символах и правилах комбинирования символов. Такому подходу недоставало ни ясности, ни гибкости. Сторонники принципа настаивали на столь жестком параллелизме арифметики и алгебры, что, осуществись он, общности алгебры был бы нанесен серьезный ущерб. По-видимому, этим математикам никогда не приходило в голову, что формула, истинная при одной интерпретации символов, может быть ложной при другой интерпретации тех же символов. Создание кватернионов подорвало самые основы принципа перманентности, потому что умножение кватернионов, ставших первым примером так называемых гиперкомплексных чисел, не обладало коммутативным свойством (гл. IV). А это означало, что буквенные символы, принимающие кватернионные значения, не обладают всеми свойствами вещественных и комплексных чисел: математики обнаружили «гиперчисла», свойства которых разнятся от свойств известных им ранее чисел. Тем самым принцип перманентности был низложен. Пикок и его последователи не учли, что вскоре (после открытия кватернионов) стало очевидным: существует не одна-единственная алгебра, а много разных алгебр и алгебру вещественных и комплексных чисел можно обосновать, лишь доказав, что буквенные символы, принимающие вещественные или комплексные значения, обладают всеми свойствами, которые приписываются этим буквенным символам.
- Математика. Поиск истины. - Клайн Морис - Математика
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Владимир Артурович Левшин - Детская образовательная литература / Математика / Прочее
- DbfWebServer. Способ эффективной работы с таблицами DBFв среде Интернет - А. Шевелёв - Математика
- Человеческий риск (системные основы управления) - Владимир Живетин - Математика
- Геометрия, динамика, вселенная - Иосиф Розенталь - Математика
- Живой учебник геометрии - Перельман Яков Исидорович - Математика