Рейтинговые книги
Читем онлайн Этот «цифровой» физический мир - Андрей Гришаев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 51 52 53 54 55 56 57 58 59 ... 91

Например, говорят, что, при столкновениях частиц, налетающая частица передаёт покоящейся частице свою кинетическую энергию. В рамках же нашего подхода, при таком столкновении полные энергии каждой из частиц не изменяются, а происходят равные по величине и противоположные по направлению перераспределения между собственной и кинетической энергиями у каждой из этих частиц.

Аналогично, при ударном возбуждении атома ударяющий электрон отнюдь не отдаёт атому свою кинетическую энергию, которая превращается в энергию возбуждения атома. При этом, как мы полагаем, у ударяющего электрона уменьшается кинетическая энергия и, соответственно, увеличивается собственная, а у атома – уменьшается энергия связи и, соответственно, тоже увеличивается собственная. Если происходит ударная ионизация, то сначала энергия связи обнуляется, с соответствующим восстановлением собственных энергий, а затем освобождённый электрон ещё и может быть приведён в движение – с превращением части его собственной энергии в кинетическую. Сходным образом, дело обходится без передачи энергии от атома к атому, когда при их соударении происходит столкновительный перенос возбуждения.

Наконец, при квантовом перебросе световой энергии с атома на атом происходят, как мы полагаем, всего лишь скоррелированные перераспределения энергии у этой пары атомов (3.10).

Подчеркнём, что автономные превращения энергии происходят со стопроцентным коэффициентом полезного действия, совершенно без потерь энергии. Так, при ускорении элементарной частицы вещества гравитационным или электромагнитным воздействием, не происходит диссипации энергии. Напротив, если говорить про двигатели, в которых сжигается топливо, то они производят почти стопроцентную диссипацию, которая сопровождается жалким побочным продуктом – автономным приростом кинетической энергии у частиц приводимого в движение аппарата. Насколько возросли бы возможности техники, если бы в ней использовался прямой доступ к алгоритмам, управляющим автономными превращениями энергии!

4.5. Где же он, релятивистский рост массы (энергии, импульса)?

Тезис о том, что кинетическая энергия элементарной частицы не может превышать одной трети от её энергии покоя (4.4), кажется смешным с позиций современной официальной физики – особенно в свете достижений ускорительной техники, где, как нас уверяют, электронам, имеющим энергию покоя в полмиллиона эВ, сообщают кинетические энергии, исчисляемые миллиардами эВ. «Если бы не было релятивистского роста массы, - вещают с телевизионных экранов академики, - то не работал бы ни один ускоритель!» Для домохозяек такие аргументы – вполне убедительны. Они же не знают, как эти ускорители «работают». А если бы узнали – ужаснулись бы.

Вот, спрашиваем: как на ускорителях проявляется релятивистский рост массы? Да, отвечают, всё так же, одним-единственным способом: через уменьшение эффективности воздействия электромагнитных полей на быстро движущуюся заряженную частицу – как и в самых первых опытах такого рода с быстрыми электронами (опыты Бухерера, Кауфмана и др.; см., например, [С1,Д3]). Чем больше скорость электрона, тем более сильное магнитное воздействие требуется приложить, чтобы искривить его траекторию. При большом желании, результаты этих опытов, действительно, можно истолковать так: по мере увеличения скорости частицы, у неё увеличивается масса, а вместе с ней и инертные свойства – так что магнитное воздействие на такую частицу вызывает всё меньший отклик.

Но такое толкование уместно, и вправду, только при большом желании – ведь здесь, как говорится, возможны варианты! Известен универсальный принцип: воздействие на объект стремится к нулю, если скорость объекта приближается к скорости передачи воздействия. Вот классический пример из механики: ветер разгоняет парусник. Когда скорость парусника становится равной скорости ветра, ветер перестаёт на него действовать. Даже детям понятно: это получается не оттого, что масса парусника становится бесконечной. Аналогичные вещи происходят при раскрутке ротора асинхронной машины вращающимся магнитным полем, а также при взаимодействии электронов с замедленной электромагнитной волной в лампе бегущей волны – и здесь, как полагают, массы тоже остаются самими собой. Лишь для методики магнитного отклонения заряженной частицы делается исключение – здесь, мол, не что иное, как релятивистский рост!

На основании чего делается такое исключение? Скорость заряженной частицы может быть измерена с помощью различных методик, напрямую реализующих понятие скорости, т.е. основанных на измерении промежутка времени, в течение которого преодолевается известное расстояние. Если на заряженную частицу, движущийся с измеренной скоростью v, подействовать поперечным магнитным полем с напряжённостью H, то частица станет двигаться по траектории с радиусом кривизны r:

, (4.5.1)

где m и e - соответственно, масса покоя и заряд частицы, γ - релятивистский фактор. Анализ искривлений треков сталкивающихся частиц показывает, что сохраняется сумма их релятивистских импульсов mvγ. Раз сохраняется релятивистский импульс – значит, мол, он и реален! Но ведь те же самые трековые данные допускают и другую интерпретацию. Если считать, что релятивистский корень в (4.5.1) описывает уменьшение напряжённости магнитного поля, которое воспринимает движущийся электрон – в согласии с релятивистскими преобразованиями компонент поля [Л2] – то наблюдаемый радиус кривизны траектории будет соответствовать не истинному значению импульса, а в γ раз завышенному. С учётом поправок на это завышение, все трековые данные будут говорить о сохранении именно классического импульса mv. Ибо релятивистский фактор γ не будет присущ импульсу, как таковому, а будет являться следствием нелинейности шкалы в данной измерительной методике.

Впрочем, можно до хрипоты спорить – так или этак интерпретировать трековые данные. Но мы обращаем внимание на бесспорный факт: вывод о релятивистском увеличении энергии частицы делается по результатам её взаимодействия только с полями – когда от этой чудовищной энергии никому «ни жарко, ни холодно». Давайте же использовать и другие методики измерения энергии частицы – по результатам её взаимодействия с веществом! Это будет прямое и честное измерение – если измерить всю энергию, в те или иные формы которой превратится энергия частицы! Здесь-то и находится «момент истины»: прямые и честные измерения показывают, что никакого релятивистского роста энергии не существует.

Ну, действительно: кому удалось, из одного релятивистского электрона, извлечь, при его взаимодействии с веществом, энергию в несколько ГэВ? Или хотя бы в несколько МэВ? Давайте посмотрим!

Вот, например, заряженные частицы оставляют треки в камере Вильсона или в пузырьковой камере. При образовании этих треков, превращения энергии, по меркам микромира, огромны – но они происходят, в основном, не за счёт энергии инициирующей частицы. Здесь регистрирующая среда пребывает в неустойчивом состоянии – это переохлаждённый пар или перегретая жидкость. Частица тратит кинетическую энергию лишь на создание ионов в среде – и эти потери энергии невелики. А ионы становятся центрами бурной конденсации или парообразования. Успей сфотографировать очаги фазовых превращений в среде – вот и трек частицы. Но энергия этих фазовых превращений – несоизмеримо больше ионизационных потерь частицы.

А можно ли измерить сами ионизационные потери? Конечно, можно. В своё время в экспериментальной физике широко использовались замечательные приборчики: пропорциональные счётчики [Д2]. Влетев в этот приборчик, частица растрачивает свою кинетическую энергию на ионизацию атомов вещества-наполнителя – принципиально до полной своей остановки. Чем больше энергия частицы, тем больше ионов она создаёт, и тем больше генерируемый приборчиком импульс тока. Обращаем внимание: средняя энергия, требуемая для создания одной пары ионов, совсем невелика – это два-три десятка эВ [Э1]. По отношению к такой энергии, говорить о релятивистском завышении неуместно. Поэтому к показаниям пропорциональных счётчиков следовало бы относиться с большим доверием – поскольку имеются веские основания полагать, что они измеряют энергию частицы честно. И вот как выглядят результаты этих честных измерений. В «нерелятивистской области», пока энергия частиц малая, результаты её измерения пропорциональными счётчиками с результатами измерений по методике магнитного отклонения. Но в «релятивистской области» единство измерений нарушается: энергия, измеряемая по магнитной методике, лезет в релятивистскую бесконечность, а энергия, измеряемая пропорциональными счётчиками, выходит на насыщение и дальше не растёт [Д2]. Причём, не похоже на то, что счётчики «шалят»: все они – при разных типах и конструкциях – показывают одно и то же. А именно: никакого релятивистского роста энергии нет.

1 ... 51 52 53 54 55 56 57 58 59 ... 91
На этой странице вы можете бесплатно читать книгу Этот «цифровой» физический мир - Андрей Гришаев бесплатно.
Похожие на Этот «цифровой» физический мир - Андрей Гришаев книги

Оставить комментарий