Шрифт:
Интервал:
Закладка:
В завершение краткого обзора Стандартной модели обратимся к сильному взаимодействию. Правила рассеивания таковы, что только кварки могут переходить в глюоны. Более того, они с большей вероятностью сделают именно это, чем что-либо еще. Предрасположенность к испусканию глюонов – именно та причина, по которой сильное взаимодействие получило свое название и по которой рассеяние глюонов способно преодолеть электромагнитную силу отталкивания, которая могла бы привести положительно заряженный протон к разрушению. К счастью, сильное ядерное взаимодействие распространяется лишь на небольшое расстояние. Глюоны покрывают расстояние не более 1 фемтометра (10–15 м) и вновь распадаются. Причина, по которой влияние глюонов настолько ограничено, особенно по сравнению с фотонами, способными путешествовать через всю Вселенную, состоит в том, что глюоны могут превращаться и в другие глюоны, как показано на двух последних диаграммах рис. 11.2. Эта уловка со стороны глюонов существенно отличает сильное взаимодействие от электромагнитного и ограничивает поле его деятельности содержимым атомного ядра. У фотонов подобного самоперехода нет, и это хорошо, потому что иначе вы бы не видели, что происходит у вас перед носом, потому что фотоны, летящие к вам, отталкивались бы от тех, которые двигаются вдоль вашей линии зрения. То, что мы вообще можем видеть, – одно из чудес природы, которое к тому же служит ярким напоминанием, что фотоны вообще редко взаимодействуют.
Мы не объяснили ни откуда берутся все эти новые правила, ни почему Вселенная содержит именно такой набор частиц. И на то есть свои причины: на самом деле мы не знаем ответа ни на один из этих вопросов. Частицы, из которых состоит наша Вселенная – электроны, нейтрино и кварки, – это актеры, исполняющие главные роли в разворачивающейся на наших глазах космической драме, но пока у нас нет убедительных способов объяснения, почему состав актеров должен быть именно таков.
Однако верно, что, имея список частиц, мы можем частично предсказать способ их взаимодействия друг с другом, предписываемый правилами рассеяния. Правила рассеяния физики взяли не из воздуха: во всех случаях они предсказываются на том основании, что теория, описывающая взаимодействия частиц, должна быть квантовой теорией поля с неким дополнением, получившим название калибровочной инвариантности[50].
Обсуждение происхождения правил рассеяния завело бы нас слишком далеко от основного направления книги – но мы все же хотим повторить, что основные законы очень просты: Вселенная состоит из частиц, которые двигаются и взаимодействуют в соответствии с рядом правил перехода и рассеяния. Мы можем пользоваться этими правилами при вычислении вероятности того, что «нечто» происходит, складывая ряды циферблатов, причем каждый циферблат соответствует каждому способу, которым «нечто» может произойти.
Происхождение массы
Заявляя, что частицы могут как перескакивать из точки в точку, так и рассеиваться, мы вступаем в область квантовой теории поля. Переход и рассеивание – это практически все, чем она занимается. Однако мы пока почти не упоминали массу, потому что решили оставить самое интересное напоследок.
Современная физика частиц призвана дать ответ на вопрос о происхождении массы и дает его с помощью прекрасного и удивительного раздела физики, связанного с новой частицей. Причем новая она не только в том смысле, что мы еще не встречали ее на страницах этой книги, но и потому, что на самом деле никто на Земле еще не встречался с ней «лицом к лицу». Эта частица называется бозоном Хиггса, и БАК уже близок к ее обнаружению. К сентябрю 2011 года, когда мы пишем эту книгу, на БАК наблюдался любопытный объект, подобный бозону Хиггса, но пока произошло недостаточно событий[51], чтобы решить, он это или нет. Возможно, это были лишь интересные сигналы, которые при дальнейшем рассмотрении исчезли. Вопрос о происхождении массы особенно замечателен тем, что ответ на него ценен и помимо нашего очевидного желания узнать, что такое масса. Попытаемся объяснить это довольно загадочное и странным образом сконструированное предложение более подробно.
Когда мы говорили о фотонах и электронах в квантовой электродинамике, ввели правило перехода для каждого из них и отметили, что эти правила отличаются: для связанного с переходом электрона из точки А в точку В мы использовали символ P(A, B), а для соответствующего правила, связанного с фотоном, – символ L(A, B). Настало время рассмотреть, насколько сильно отличаются правила в этих двух случаях. Разница состоит, например, в том, что электроны делятся на два типа (как мы знаем, они «крутятся» одним из двух различных способов), а фотоны – на три, но это различие нас сейчас интересовать не будет. Мы обратим внимание на другое: электрон обладает массой, а фотон – нет. Именно это мы и будем исследовать.
На рис. 11.4 показан один из вариантов, как мы можем представить распространение частицы, обладающей массой. Частица на рисунке перескакивает из точки А в точку В за несколько стадий. Она переходит из точки А в точку 1, из точки 1 в точку 2 и так далее, пока, наконец, не попадает из точки 6 в точку В. Интересно, однако, что в таком виде правило для каждого скачка – это правило для частицы с нулевой массой, но с одной важной оговоркой: каждый раз, когда частица меняет направление, мы должны применить новое правило уменьшения циферблата, причем величина уменьшения обратно пропорциональна массе описываемой частицы. Это значит, что при каждом переводе часов циферблаты, связанные с тяжелыми частицами, уменьшаются менее резко, чем циферблаты, связанные с более легкими частицами. Важно подчеркнуть, что это правило системное.
Рис. 11.4. Массивная частица, движущаяся из точки А в точку В
И зигзагообразное движение, и уменьшение циферблата непосредственно вытекают из правил Фейнмана для распространения массивной частицы без каких-то других предположений[52]. На рис. 11.4 показан лишь один способ попадания частицы из точки А в точку В – после шести поворотов и шести уменьшений. Чтобы получить итоговый циферблат, связанный с массивной частицей, переходящей из точки А в точку В, мы, как всегда, должны сложить бесконечное количество циферблатов, связанных со всеми возможными способами, которыми частица может проделать свой зигзагообразный путь из точки А в точку В. Самый простой способ – прямой путь без всяких поворотов, но придется принять во внимание и маршруты с огромным количеством поворотов.
Для частиц с нулевой массой уменьшающий коэффициент, связанный с каждым поворотом, просто убийственен, потому что бесконечен. Иными словами, после первого же поворота мы уменьшаем циферблат до нуля. Таким образом, для частиц без массы имеет значение только прямой маршрут – другим траекториям просто не соответствует никакой циферблат. Именно этого мы и ожидали: для частиц без массы мы можем использовать правило скачка. Однако для частиц с ненулевой массой повороты разрешены, хотя если частица очень легкая, то коэффициент уменьшения налагает суровое вето на траектории со многими поворотами.
Таким образом, наиболее вероятные маршруты содержат мало поворотов. И наоборот, тяжелым частицам не грозит слишком большой уменьшающий коэффициент при повороте, так что они чаще описываются маршрутами с зигзагообразным движением. Поэтому можно считать, что тяжелые частицы можно считать частицами без массы, которые двигаются из точки А в точку В зигзагообразно. Количество зигзагов – это и есть то, что мы называем «массой».
Все это замечательно, потому что теперь у нас появился новый способ представления массивных частиц. На рис. 11.5 показано распространение трех разных частиц с возрастающей массой из точки А в точку В. Во всех случаях правило, связанное с каждым «зигзагом» их пути, совпадает с правилом для частицы без массы, и за каждый поворот приходится расплачиваться уменьшением циферблата. Но не следует слишком радоваться: пока мы еще не объяснили ничего фундаментального. Все, что пока удалось сделать, – это заменить слово «масса» словами «стремление к зигзагам». Это можно было сделать, потому что оба варианта – математически эквивалентные описания распространения массивной частицы. Но даже при таких ограничениях наши выводы кажутся интересными, а сейчас мы узнаём, что это, оказывается, не просто математический курьез.
- Тайны Атлантиды - Алим Войцеховский - Прочая научная литература
- Английский для русских. Курс английской разговорной речи - Наталья Караванова - Прочая научная литература
- Вселенная из ничего - Лоуренс Краусс - Прочая научная литература
- Язык химии. Этимология химических названий - Илья Леенсон - Прочая научная литература
- Краткая история почти всего на свете - Билл Брайсон - Прочая научная литература
- Конкурентоспособность менеджмента на основе современных форм и методов управления предприятиями - Вячеслав Моргунов - Прочая научная литература
- Мудрость веков в языке бизнеса. Паремии в англоязычном научно-популярном деловом дискурсе. Когнитивно-дискурсивный аспект - Татьяна Ширяева - Прочая научная литература
- Под сводами Дворца правосудия. Семь юридических коллизий во Франции XVI века - Павел Уваров - Прочая научная литература
- На 100 лет вперед. Искусство долгосрочного мышления, или Как человечество разучилось думать о будущем - Роман Кржнарик - Прочая научная литература / Обществознание / Публицистика
- Философия Гарри Поттера: Если бы Аристотель учился в Хогвартсе - Дэвид Бэггет - Прочая научная литература / Науки: разное