Рейтинговые книги
Читем онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 39 40 41 42 43 44 45 46 47 ... 140

На протяжении XVIII в. против отрицательных чисел выдвигалось немало возражений. Английский математик, член совета Кларе-колледжа в Кембридже и член Королевского общества, Фрэнсис Мазер (1731-1824) был автором солидных работ по математике и фундаментального трактата по страхованию жизни. В 1759 г. он опубликовал «Рассуждение о применении в алгебре знака минус». Мазер показал, как избежать отрицательных чисел (исключение составляли лишь числа, получаемые в том случае, когда из меньшего числа необходимо вычесть большее), и в частности отрицательных корней уравнения. Он произвел тщательную классификацию квадратных уравнений: уравнения с отрицательными корнями Мазер рассматривал отдельно, а сами отрицательные корни рекомендовал отбрасывать. Аналогичным образом он поступал и с кубическими уравнениями. Об отрицательных корнях Мазер говорил:

… Насколько я могу судить, они служат лишь для того, чтобы внести замешательство во всю теорию уравнений и сделать смутным и загадочным то, что по самой своей природе особенно ясно и просто… Чрезвычайно желательно поэтому не допускать отрицательные корни в алгебру, а если таковые все же возникнут, неукоснительно изгонять их. Имеются веские основания полагать, что если бы нам удалось избавиться от отрицательных корней, то тем самым были бы сняты возражения, выдвигаемые многими учеными и остроумными мужами против алгебраических вычислений как слишком сложных и наделенных почти непостижимыми для разума понятиями. Алгебра, или всеобщая арифметика, по самой своей природе, несомненно, является наукой не менее простой, ясной и пригодной для доказательства, чем геометрия.

Еще более ожесточенными были споры о смысле комплексных чисел и применении этих чисел. И без того трудное положение осложнилось здесь тем, что некоторые математики стали рассматривать логарифмы отрицательных чисел (а также комплексных чисел), которые также должны были являться комплексными числами.

С 1712 г. развернулась острая дискуссия о смысле комплексных чисел, и в частности о логарифмах отрицательных и комплексных чисел, в которой участвовали своими статьями и письмами Лейбниц, Эйлер и Иоганн Бернулли. Лейбниц и Бернулли воспользовались для обозначения комплексных чисел термином «мнимые», предложенным Декартом, понимая под мнимыми величинами (к ним они относили и отрицательные числа) числа, которые не существуют. Тем не менее и Лейбниц, и Бернулли, словно по волшебству, с немалой пользой применяли «несуществующие» числа в анализе, получая с их помощью, например, совершенно правильные формулы интегрирования: промежуточные выкладки, казалось бы, не имели смысла, но окончательный результат был верен.

Лейбниц заявлял, что логарифмы отрицательных чисел не существуют, и в доказательство приводил различные аргументы. Иоганн Бернулли считал, что log a = log(−a), и в подтверждение также ссылался на различные доводы. Одно из «доказательств» опиралось на хорошо известные свойства логарифмов положительных чисел:

log(−a) = 1/2log(−a)2 = 1/2log a2 = log a.

Другой аргумент, взятый Бернулли из математического анализа, приводил к тому же выводу. Переписка между Лейбницем и Иоганном Бернулли о логарифмах отрицательных чисел была весьма обширной, но — увы! — большинство утверждений, на которых настаивали обе стороны, были неверными.

К правильному решению проблемы пришел Эйлер. Свой результат он изложил в работе «Исследования о мнимых корнях уравнений» (1751). Окончательный ответ, правильный по существу, но полученный с помощью неправильных рассуждений, применим ко всем комплексным числам, в том числе и к вещественным числам (если y = 0, то комплексное число x + iy обращается в вещественное число x); он имеет следующий вид:

log(x + iy) = log(ρeiφ) = log ρ + i(φ + 2nπ){74},

где n — произвольное целое число. Однако современники Эйлера не поняли и не оценили эту его замечательную работу.

О своих результатах Эйлер сообщил в письме Д'Аламберу от 15 апреля 1747 г., где обратил внимание на то, что даже у любого положительного вещественного числа существует бесконечно много логарифмов. Лишь один из них является вещественным числом, и именно его мы обычно используем в своих вычислениях с вещественными числами. Ни обширная переписка, ни работа Эйлера не убедили Д'Аламбера, и в своей заметке «О логарифмах отрицательных величин» он выдвинул всевозможные метафизические, аналитические и геометрические аргументы против существования таких логарифмов. Д'Аламбер преуспел в своем намерении: ему удалось основательно запутать и без того сложную проблему. Свои расхождения с Эйлером Д'Аламбер пытался скрыть, утверждая, будто речь идет лишь о различиях в формулировках, а не о принципиальных разногласиях по существу вопроса.

Все участники острой полемики, развернувшейся вокруг проблемы расширения понятия числа, мыслили непоследовательно. В первой половине XVIII в. было принято считать, что некоторые операции над комплексными числами, например операция возведения комплексного числа в комплексную степень, могут привести к числам совершенно новой природы. Подобным представлениям положил конец Д'Аламбер, доказавший в своей работе «Размышления об общей причине ветров» (1747), что все операции, производимые над комплексными числами, порождают только комплексные числа. Доказательство Д'Аламбера было усовершенствовано Эйлером и Лагранжем, но решающий шаг здесь сделал именно Д'Аламбер. По-видимому, Д'Аламбер сознавал непоследовательность и даже противоречивость собственных представлений о комплексных числах. Во всяком случае, в «Энциклопедии», для которой он написал много математических статей, о комплексных числах ни разу не упоминается.{73}

Не было полной ясности в вопросах, связанных с комплексными числами, и у Эйлера. В своей «Алгебре» (1770), лучшем учебном курсе XVIII в. по этой дисциплине, Эйлер утверждал:

Квадратные корни из отрицательных чисел не равны нулю, не меньше нуля и не больше нуля. Отсюда ясно, что квадратные корни из отрицательных чисел не могут находиться среди возможных [действительных, вещественных] чисел. Следовательно, нам не остается ничего другого, как признать их невозможными числами. Это приводит нас к понятию чисел, по своей природе невозможных и обычно называемых мнимыми или воображаемыми, потому что они существуют только в воображении.

Производя операции над комплексными числами, Эйлер порой и ошибался. Так, в его «Алгебре» фигурирует равенство √14 = √4 = 2, выписанное по аналогии с тождеством √a∙√b=√ab, справедливым для положительных a и b, т.е. для вещественных корней.

Называя комплексные числа невозможными, Эйлер в то же время отмечал их полезность. В частности, он считал комплексные числа полезными по той причине, что они якобы позволяют отличать задачи, имеющие решения, от задач, не имеющих решения. Так, если бы нам понадобилось разложить число 12 на две части, произведение которых должно было бы равняться 40 (намек на задачу Кардано), то мы обнаружили бы, что эти части равны соответственно 6 + √−4 и 6 − √−4, т.е., согласно Эйлеру, узнали бы, что задача неразрешима.

Несмотря на множество принципиальных возражений против комплексных чисел, на протяжении XVIII в. их широко использовали, свободно применяя к ним правила арифметических действий над вещественными числами. Так математики получали практические навыки в обращении с комплексными числами. В тех случаях, когда комплексные числа применялись лишь на промежуточных стадиях математических доказательств, полученные с их помощью окончательные результаты всегда оказывались верными, что не могло не произвести благоприятного впечатления. Тем не менее математиков не оставляли сомнения в правильности такого рода доказательств, а иногда даже и получаемых с их помощью результатов.

Общее отношение математиков к узакониванию научного статуса тех разновидностей чисел (иррациональных, отрицательных и комплексных), которые доставляли им столько хлопот, отчетливо выразил Д'Аламбер в своей статье об отрицательных числах, написанной для «Энциклопедии». В целом эта статья была написана недостаточно ясно и завершалась следующим признанием: «Алгебраические правила действий над отрицательными числами ныне общеприняты, и все признают их точными независимо от того, что бы мы ни думали о природе этих чисел».

За многие века, на протяжении которых европейские математики упорно пытались понять природу различных типов чисел, на передний план выступила еще одна фундаментальная логическая задача — задача обоснования алгебры. Первой работой, существенно упорядочившей новые результаты, было «Великое искусство» Дж. Кардано. В этой книге Кардано показал, как решать кубические уравнения (например, x3 + 3x2 + 6x = 10) и уравнения четвертой степени (типа х4 + 3x3 + 6x2 + 7x + 5 = 0). Примерно за сто лет арсенал алгебры пополнился многими важными результатами, часть которых была известна еще арабским математикам: методом математической индукции, биномиальной теоремой и приближенными методами вычисления корней уравнений разных степеней. Основной вклад в сокровищницу алгебры внесли Виет, Гарриот, Жирар, Ферма, Декарт и Ньютон. Но все эти новые результаты фактически не были доказаны. Правда, Кардано, а позднее Бомбелли и Виет привели в обоснование своих методов решения кубических уравнений и уравнений четвертой степени кое-какие геометрические соображения, но, поскольку эти математики игнорировали отрицательные и комплексные корни, приведенные ими соображения заведомо не могли рассматриваться как доказательства. Кроме того, появление уравнений высших степеней, например четвертой и пятой, означало, что геометрия, ограниченная в те времена трехмерным пространством, не могла служить основой доказательств. Результаты, полученные другими авторами, чаще всего оказывались всего лишь более или менее удачными догадками, подсказанными конкретными примерами.

1 ... 39 40 41 42 43 44 45 46 47 ... 140
На этой странице вы можете бесплатно читать книгу Математика. Утрата определенности. - Морис Клайн бесплатно.

Оставить комментарий