Шрифт:
Интервал:
Закладка:
Время, за которое данное расстояние покоившееся тело проходит с равноускоренным движением, равно времени, за которое то же самое расстояние будет пройдено тем же самым телом, движущимся равномерно со скоростью, равной средней степени между наименьшей и наибольшей степенью вышеупомянутого равноускоренного движения.
Пусть отрезок АВ представляет время, за которое тело (находясь в движении) прошло расстояния CD, двигаясь равноускоренно из состояния покоя; и пусть последняя и наибольшая степень возрастающей скорости за моменты времени АВ будет представлена отрезком ЕВ, произвольным образом проведенным к АВ. Если соединить точки А и Е, то все отрезки, проведенные параллельно ЕВ из всех точек АЕ, будут представлять степени возрастающей скорости после момента А. Далее, если отрезок ВЕ разделить пополам точкой F и провести отрезки FG и AG параллельно BA и BF, получится параллелограмм AGFB, который будет равен треугольнику AEB, и его сторона GF пересекает отрезок AE в точке I, деля его пополам. Если продолжить параллельные отрезки треугольника AEB до IG, то мы получим совокупность (aggregatum) всех параллельных отрезков, содержащихся в четырехугольнике, равную множеству, содержащемуся в треугольнике АЕВ, поскольку отрезки, содержащиеся в треугольнике IEF, равны тем, что содержатся в треугольнике GIA; что касается отрезков, содержащихся в трапеции AIFB, то они общие. Тем не менее, так как всем и каждому моменту времени АВ соответствуют все и каждая точка на отрезке АВЕ и так как параллельные отрезки, проведенные из этих точек, содержащиеся в треугольнике АЕВ, представляют увеличивающиеся степени возрастающей скорости, в то время как отрезки, содержащиеся в параллелограмме, равным образом представляют столько же степеней скорости не возрастающей, но равной [одинаковой], ясно, что в ускоренном движении, сообразно возрастанию отрезков треугольника АЕВ, не хватает столько моментов скорости, сколько в равномерном движении, сообразно отрезкам параллелограмма GB. Действительно, моменты, отсутствующие в первой половине ускоренного движения (а именно моменты, представленные отрезками в треугольнике AGI), компенсируются моментами, представленными отрезками внутри треугольника IEF. Таким образом, ясно, что расстояния, пройденные за одинаковое время двумя телами, одно из которых начало двигаться равноускоренно из состояния покоя, а другое двигалось равномерно, с моментом [скорости], равным половине момента максимальной скорости ускоряющегося движения, будут одинаковыми. Что и требовалось доказать.
Мы видим, что в доказательстве в «Беседах…» использованы те же понятия и те же методы, что и в «Диалоге…»: момент, мгновенная скорость, сумма или множество моментов или скоростей. Однако это доказательство более непосредственное, более полное: движение более не разделяется на фрагменты, но, скажем так, рассматривается в целом. Поэтому для расчета пройденного расстояния не нужно приводить идею возможного движения – равномерного движения, которое предмет мог бы совершать после того, как завершилось ускоренное движение. Последнее, вернее, сумма его скоростей или моментов, приравнивается здесь к сумме моментов равномерного движения, скорость которого равна половине максимальной скорости, достигаемой при ускоряющемся движении. Подобный метод, пожалуй, позволяет продвинуться, однако это перевешивается тем, что здесь куда более явно, нежели в доказательстве из «Диалога…», рассуждение Галилея применяется к завершенному и приостановленному движению. Конечно же, метод представлен в общем виде и может быть применен ко всякому ускоренному движению, при условии что ускорение равномерно, какими бы ни были расстояние и длительность. Но все эти движения можно помыслить лишь завершенными, и то, чего не хватает доказательству Галилея, так это просто показать «высшее сродство движения и времени», решающую роль времени. В том числе поэтому к этой первой теореме (единственной, которая была доказана в «Диалоге») в «Беседах и математических доказательствах…» прибавляется вторая365:
Если из состояния покоя тело начинает падать, равномерно ускоряясь, расстояния, пройденные им за любые промежутки времени, соотносятся между собой в удвоенном отношении времени, т. е. как квадраты времени.
Пусть течение времени начиная с некоторого момента А будет представлено отрезком АВ, на котором мы произвольно возьмем два временных отрезка AD и ВЕ; пусть HI будет линией, вдоль которой тело, начиная от точки H, принятой за начало движения, падает с равномерным ускорением; пусть HL будет расстоянием, пройденным за первый промежуток времени AD, а HM – расстоянием, которое тело пройдет за время AE; я утверждаю, что отношение расстояния HL к HM равно удвоенному отношению квадратов ЕА и AD. Проведем линию ВС366, образующую произвольный угол с линией АВ, и точки D, E, из которых мы проведем параллельные отрезки DO, EP: DO будет представлять наибольшую степень скорости, достигаемую в момент Е временного промежутка ВЕ. А так как ранее мы доказали в отношении пройденных расстояний, что расстояния – одно из которых было пройдено телом, двигавшимся с равномерным ускорением из состояния покоя, а другое за то же время было пройдено другим телом, двигавшимся равномерно со скоростью, равной половине наибольшей скорости, достигнутой при ускоряющемся движении, – равны, из этого следует, что расстояния МН, LH будут такими же, как если бы были пройдены равномерными движениями, скорости которых были бы равны половине PE, OD, за время DA, AE. Таким образом, если бы было показано, что расстояния MH, LH относятся друг к другу как квадраты EA и DA, то наша теорема была бы доказана. Однако в четвертом положении книги I
- Конституция США - Джордж Вашингтон - Прочая документальная литература
- Технологии изменения сознания в деструктивных культах - Тимоти Лири - Прочая документальная литература
- Современники: Портреты и этюды - Корней Чуковский - Прочая документальная литература
- Рельефъ земли Всевеликаго Войска Донского - Владимир Владимирович Богачев - Путешествия и география / Прочая документальная литература
- Что видела собака: Про первопроходцев, гениев второго плана, поздние таланты, а также другие истории - Малкольм Гладуэлл - Прочая документальная литература
- Под куполом парашюта - Константин Кайтанов - Прочая документальная литература
- Власть Путина. Зачем Европе Россия? - Хуберт Зайпель - Биографии и Мемуары / Прочая документальная литература / Политика / Публицистика
- Нить времен - Эльдар Саттаров - Прочая документальная литература / Историческая проза / История / Политика / Русская классическая проза
- Горькое лето 1941 года - Александр Бондаренко - Прочая документальная литература
- Красный шторм. Октябрьская революция глазами российских историков - Егор Яковлев - Прочая документальная литература