Шрифт:
Интервал:
Закладка:
Собственно, это замаскированная попытка определить сложность по образцу первых двух из числа уже приведенных определений.
Еще одна группа исследователей в качестве критерия сложности использует наличие системной динамики (невозможность описать систему с помощью статической модели — по существу переход к тому же многомодельному исследованию).
К числу свойств сложных систем, которые могут рассматриваться в качестве «показателя сложности» могут быть отнесен целый ряд свойств, из которого наиболее весомыми являются следующие:
— свойство эмерджентности;
— свойство отставания управления от специализации;
— свойства способности к адаптации, самосовершенствованию, самовоспроизводству, средопреобразованию.
— Эмерджентность — это новоприобретенное свойство системы, возникновение которого не может рассматриваться как итог примитивного суммирования показателей ее элементов, а является результатом возникновения системных связей и адаптивного перераспределения функций между элементами. Одним из альтернативных названий свойства эмерджентности является название «свойство организованной сложности». Характеристики всякой системы занимают одно из «промежуточных положений» в пространстве от примитивной физической аддитивности (аналог векторной суммы) до абсолютной целостности (эмерджентности).
Функционирование сложных систем связано с процессами развития систем, в том числе — с процессами развития специализации элементов и совершенствования координации их деятельности. Еще одним интересным свойством сложных систем является свойство отставания управления от специализации в сложных системах. В связи с этим был сформулирован закон необходимого разнообразия (закон Эшби), гласящий, что для того, чтобы некоторая система могла управлять другой системой, она должна обладать сложностью не меньшей, чем сложность управляемой системы.
Объединение в одну группу таких свойств, как способность к адаптации, самосовершенствованию, самовоспроизводству и преобразованию среды функционирования не случайно, поскольку они имеют общий корень — сложные системы способны создавать внутри себя информационную модель себя и окружающей среды.
Существуют различные критерии оценки сложности, в том числе — в кибернетике, социологии, политологии — везде, где исследователь, сталкиваясь с проблемой размерности, ищет выход в построении некоторым образом организованной совокупности абстрактных объектов, рассмотрение которых в качестве единого целого обеспечивает возможность «изолированного» решения задач, относящихся к некоторому уровню в общей иерархии задач исследования.
Таким образом, мы вышли на некоторую общую закономерность: понятие сложной системы связано с иерархическим устройством самой системы и/или моделей, используемых для ее описания. Небольшой комментарий по поводу употребления «и/или» — в ряде случаев прием «иерархизации» используется исключительно на модельном уровне — такой подход может быть выражением специфики мышления и способа организации целей субъекта исследований. В этом случае сложность — не есть атрибут системы, а лишь выражение способа ее рассмотрения, принципа упорядочения целей исследований или результат проявления действия ограничений на допустимую для исследователя и его инструментария размерность задач.
Таким образом, мы можем перейти к этапу формулирования своего, специфического, определения сложной системы. Авторы считают, что сложная система — это система, для рассмотрения которой в контексте конкретной проблемной ситуации необходимо использовать прием иерархического упорядочивания ее элементов в интересах понижения размерности решаемых задач.
А поскольку системный анализ имеет в качестве предмета исследований сложные системы, можно утверждать, что системный анализ может рассматриваться в качестве средства понижения размерности задач, структурирования целей. Системный анализ — это инструмент, позволяющий исследователю преодолеть ограничения на допустимую размерность задач, ядром которого является функция целеполагания исследователя. В зависимости от целей анализа один и тот же объект исследования может рассматриваться либо как некая неделимая сущность, либо как системное единство его частей.
Несомненно, что главной задачей системного анализа является получение модели, предельно адекватной объекту исследования. А уже на втором этапе, методом задания изменений внешних воздействий добиваются достижения необходимого отклика в поведении модели системы и транспонируют (переносят) его на объект исследования. При этом могут достигаться различные, подчас противоположные цели, и они могут быть как структурированными, так и абсолютно не связанными друг с другом.
2.2 Моделирование как метод познания
Коль скоро мы рассматриваем системный анализ в качестве инструмента, а вернее комплекта инструментов научных исследований и решения прикладных задач управленческой деятельности, то прежде, чем этим комплектом воспользоваться, следует хотя бы поверхностно ознакомиться с описью комплекта. Что же входит в его состав?
Следует разделить все инструменты на две группы:
— неформальные методы;
— формальные методы.
Каждая из этих групп может быть подвергнута дальнейшему дроблению, однако на этом этапе мы не будем углубляться в дебри классификации, а остановимся на ее верхнем уровне.
Неформальные методы системного анализа преимущественно концентрируются на решении задач организации аналитической деятельности. Здесь широко используются методики, широко привлекающие знания, накопленные в отрасли гуманитарных наук (как наук о человеке, включая психологию и ее технические приложения, такие как инженерная психология). Важную роль здесь играет, например, когнитивная психология (раздел психологии, изучающий специфику познавательной деятельности человека). Здесь рассматриваются вопросы оптимального представления знаний, организации интеллектуального труда (от регламента рабочих сессий аналитиков до подбора состава рабочих групп, порядка проведения «мозговых штурмов»).
По мере развития средств вычислительной техники эта отрасль системного анализа получила в свое распоряжение мощные средства хранения и представления знаний, работающие, в том числе и в псевдо-трехмерном режиме отображения, средства телекоммуникационного обеспечения аналитической деятельности и иные инструменты, способствующие интенсификации интеллектуального труда. Некоторые авторы называют эту группу методов системного анализа методами, направленными на активизацию использования интуиции и опыта специалистов.
Характерно, что, несмотря на свое название, неформальные методы отнюдь не бедны формальными процедурами. Здесь используются достаточно сложные статистические, теоретико-множественные и логические процедуры, обеспечивающие возможность перехода от многообразия субъективных оценок экспертов к взвешенным и аргументированным решениям, вырабатываемым на основе их анализа. Формальные средства, используемые на этапе обработки результатов рабочих сессий не менее сложны и изощренны, чем те, которые используются в других отраслях науки.
К числу неформальных методов относят:
— методы мозгового штурма;
— методы модерирования[46] рабочих сессий и игротехники;
— методы экспертного анализа;
— метод Дельфи;
— метод сценариев;
— методы классификации и структуризации проблемной области;
— методы компактного представления данных (диаграммы и т. д.); методы календарного планирования и иные.
Формальные методы системного анализа внешне являют противоположность неформальным; оперируя строгой математической символикой, они мало походят на неформальные методы, находящиеся на противоположном полюсе системной теории. Абстрактные математические построения обеспечивают здесь не вспомогательные операции, а являются выражением сущности процессов, обеспечивая прогнозируемую точность и высокую объективность результатов исследования. Однако переход от неформальных методов к формальным — есть результат эволюции знаний о системе (да, и весь системный анализ, собственно, является инструментом поэтапного накопления и структурирования знаний, совершенствования кибернетической модели процессов и систем).
- Информационно-аналитические методы оценки и мониторинга эффективности инновационных проектов - Чинара Керимова - Прочая научная литература
- Рефераты и контрольные работы по психологии. Технология работы, требования, темы, литература - С. Морозюк - Прочая научная литература
- Синергетика. Основы методологии - Г. Басина - Прочая научная литература
- Нарративная экономика. Новая наука о влиянии вирусных историй на экономические события - Роберт Шиллер - Зарубежная образовательная литература / Прочая научная литература / Экономика
- Теории всего на свете - Коллектив авторов - Прочая научная литература
- Инвестиционная стратегия населения на рынке российских акций - Павел Кравченко - Прочая научная литература
- Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман - Прочая научная литература
- Храм муз словесных - Вячеслав Васильевич Коломинов - История / Прочая научная литература
- Полный курс медицинской грамотности - Антон Родионов - Прочая научная литература
- Внуки Солнца - Владимир Гетман - Прочая научная литература