Шрифт:
Интервал:
Закладка:
Применяются также эвристические приемы, не основанные на какой—либо теории: метод скользящих средних, метод экспоненциального сглаживания. Адаптивные методы прогнозирования позволяют оперативно корректировать прогнозы при появлении новых точек
Многомерная регрессия – основной на настоящий момент эконометрический аппарат прогнозирования. Подчеркнем, что нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно. Однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной центральной предельной теореме теории вероятностей и эконометрической технологии линеаризации. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.
Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Дело в том, что априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить. Крупное направление современных эконометрических исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, установлено, что обычно используемые статистические оценки степени полинома при росте объемы выборки имеют геометрическое распределение.
Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее сильные результаты в этой области получены с помощью подходов статистики нечисловых данных.
К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса—Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.
Для установления возможности применения асимптотических результатов при конечных (т. н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстреп—методов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.
Прогнозирование на основе данных, имеющих нечисловую природу, в частности, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, а также регрессионный анализ нечетких данных. Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи – дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем) дает единый подход к формально различным методам, традиционно рассматриваемым как принципиально различные. Она полезна при программной реализации современных статистических методов прогнозирования.
Экспертные методы прогнозирования. Необходимость и общее представление о применении экспертных методов прогнозирования при принятии решений на различных уровнях управления – на уровне страны, отрасли, региона, предприятия – вытекают из рассмотрений главы 3.4. Отметим большое практическое значение экспертиз при сравнении и выборе инвестиционных и инновационных проектов, при управлении проектами, экологических экспертиз. Роли лиц, принимающих решения (ЛПР), и специалистов (экспертов) в процедурах принятия решений, критерии принятия решений и место экспертных оценок в процедурах принятия решений рассматриваются в экспертологии – научно—практической дисциплине, посвященной методам экспертных оценок. На ее основе формируются конкретные процедуры подготовки и принятия решений с использованием методов экспертных оценок, например, процедуры распределения финансирования научно—исследовательских работ (на основе балльных оценок или парных сравнений), технико—экономического анализа, кабинетных маркетинговых исследований (противопоставляемых «полевым» выборочным исследованиям), оценки, сравнения и выбора инвестиционных проектов. В качестве примеров конкретных экспертных процедур, широко используемых при прогнозировании, укажем метод Дельфи и метод сценариев.
Экспертные оценки могут быть получены в различных математических формах. Наиболее часто используются количественные или качественные (порядковые, номинальные) признаки, бинарные отношения (ранжировки, разбиения, толерантности), интервалы, нечеткие множества, результаты парных сравнений, тексты и др. Основные понятия (репрезентативной) теории измерений: основные типы шкал, допустимые преобразования, адекватные выводы и др. – важны применительно к экспертному оцениванию. Необходимо использовать средние величины, соответствующие основным шкалам измерения. Применительно к различным видам рейтингов репрезентативная теория измерений позволяет выяснить степень их адекватности прогностической ситуации, предложить наиболее полезные для целей прогнозирования.
Например, анализ рейтингов политиков по степени их влиятельности, публиковавшийся одной из известных центральных газет, показал, что из—за неадекватности используемого математического аппарата лишь первые 10 мест, возможно, имеют некоторое отношение к реальности (они не меняются при переходе к другому способу анализа данных, т. е. не зависят от субъективизма членов Рабочей группы), остальные – «информационный шум», попытки опираться на них при прогностическом анализе могут привести лишь к ошибкам. Что же касается начального участка рейтинга этой газеты, то он также может быть подвергнут сомнению, но по более глубоким причинам, например, связанным с составом экспертной комиссии.
Проблемы применения методов прогнозирования в условиях риска. Многочисленны примеры ситуаций, связанных с социальными, технологическими, экономическими, политическими, экологическими и другими рисками. Именно в таких ситуациях обычно и необходимо прогнозирование. Известны различные виды критериев, используемых в теории принятия решений в условиях неопределенности (риска). Из—за противоречивости решений, получаемых по различным критериям, очевидна необходимость применения оценок экспертов.
Как считает Заместитель генерального директора INTERFINANCE (ООО «ИНТЕРФИНАНС МВ») Шевчук Денис Александрович, в конкретных задачах прогнозирования необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска, в частности, построить деревья причин (в другой терминологии, деревья отказов) и деревья последствий (деревья событий). Центральной задачей является построение групповых и обобщенных показателей, например, показателей конкурентоспособности и качества. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов. Метод сценариев незаменим применительно к анализу технических, экономических и социальных последствий аварий.
Имеется некоторая специфика применения методов прогнозирования в ситуациях, связанных с риском. Велика роль функции потерь и методов ее оценивания, в том числе в экономических терминах. В конкретных областях используют вероятностный анализ безопасности (для атомной энергетики) и другие специальные методы.
Принятие решений и современные компьютерные технологии прогнозирования. Перспективны интерактивные (человеко—машинные) методы прогнозирования с использованием баз эконометрических данных, имитационных (в том числе на основе применения метода Монте—Карло, т. е. метода статистических испытаний) и экономико—математических динамических моделей, сочетающих экспертные, статистические и моделирующие блоки. Обратим внимание на сходство и различие методов экспертных оценок и экспертных систем. Можно сказать, что экспертная система моделирует поведение эксперта путем формализации его знаний по специальной технологии. Но интуицию «живого эксперта» нельзя заложить в ЭВМ, а при формализации мнений эксперта (фактически – при его допросе) наряду с уточнением одних его представлений происходит огрубление других. Другими словами, при использовании экспертных оценок непосредственно обращаются к опыту и интуиции высококвалифицированных специалистов, а при применении экспертных систем имеют дело с компьютерными алгоритмами расчетов и выводов, при создании которых когда—то давно привлекались эксперты как источник данных и типовых заключений.
- Повышение эффективности производства посредством интеграции статистических методов в функционально-стоимостный анализ - Александр Сергеев - Прочая научная литература
- Динозавры России. Прошлое, настоящее, будущее - Антон Евгеньевич Нелихов - Биология / История / Прочая научная литература
- Социальная педагогика: конспект лекций - Д. Альжев - Прочая научная литература
- Теория и методика воспитания: конспект лекций - О. Битаева - Прочая научная литература
- Пятьдесят лет в Российском императорском флоте - Генрих Цывинский - Прочая научная литература
- Организационно-экономические аспекты обеспечения качества бизнес-планирования на промышленных предприятиях - Дмитрий Горелов - Прочая научная литература
- Финансы - Ирина Бородушко - Прочая научная литература
- Аналитика: методология, технология и организация информационно-аналитической работы - Юрий Курносов - Прочая научная литература
- Персональные данные работников организации и их защита - К. Саматов - Прочая научная литература
- Современные технологии в физическом воспитании - Сергей Гурьев - Прочая научная литература