Рейтинговые книги
Читем онлайн Революция в физике - Луи де Бройль

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 34 35 36 37 38 39 40 41 42 ... 55

Борн предложил разрешить эту трудность, вновь обратившись к вероятности. Согласно теории Борна частица не обладает определенной энергией. Она может иметь одну из энергий, соответствующую одной из частот «КСИ»-волны. Более точно это означает, что при определении энергии частицы можно найти одну из этих величин, не зная a priori, какую именно. Единственно, что можно сказать a priori, это какова вероятность обнаружить то или иное из возможных значений энергии. В этом заключается введенный Борном новый принцип.

В сущности утверждение, что волна, связанная с частицей, представляет собой суперпозицию плоских монохроматических волн, означает, что «КСИ»-функция математически изображается в виде суммы членов, каждый из которых описывает монохроматическую волну. Каждый из этих членов характеризуется коэффициентом, который можно назвать парциальной амплитудой этой монохроматической компоненты спектрального разложения «КСИ»-волны. Квадрат модуля этой амплитуды будет определять соответствующую парциальную интенсивность. Принцип, сформулированный Борном, состоит в утверждении, что вероятность того, что измерение энергии частицы даст определенную величину, соответствующую одной из монохроматических компонент «КСИ»-волны, дается соответствующей парциальной интенсивностью в спектральном разложении этой волны. Этот принцип снова находится в полном согласии с положениями оптики.

Действительно, предположим, что на призму или дифракционную решетку падает немонохроматическая световая волна. После прохождения луча через прибор оказывается, что различные монохроматические компоненты волны отделяются друг от друга. Очевидно, вероятность того, что фотон первичного луча попадет в тот или иной отклоненный луч, пропорциональна интенсивности соответствующей монохроматической компоненты в спектральном разложении падающей волны.

Этот вопрос можно рассмотреть также с более общей точки зрения. Примененный к квантовым атомным системам, этот принцип дает ключ к разрешению трудности, о которой уже говорилось. В квантовом атоме существует набор частот, соответствующих стационарным значениям квантованной энергии. Однако для такой системы, как и для колеблющейся струны, можно легко представить себе, как некоторое состояние образуется суперпозицией стационарных состояний. В самом деле, взяв в качестве «КСИ»-функции сумму подходящих колебаний, можно снова получить решение волнового уравнения, поскольку оно линейно. Правда, о состоянии атома, которое описывается этой «КСИ»-функцией, уже нельзя сказать, что оно стационарно. Оно представляет собой нечто вроде нескольких стационарных состояний в один и тот же момент времени. Совершенно непонятно, что это означает с классической точки зрения.

Принцип спектрального разложения позволяет разрешить эту трудность совершенно неожиданным образом: атом в рассматриваемом состоянии может иметь любое из квантованных значений энергии, которые соответствуют спектральному разложению его «КСИ»-волны, с вероятностью, пропорциональной интенсивности соответствующих спектральных компонент. Здесь это снова означает, что эксперимент, позволяющий нам приписать атому определенную энергию, дает ее значение, соответствующее спектральному разложению. Вероятностный характер этой трактовки позволяет вновь почувствовать ту совершенно новую форму, которую должна принять физическая теория.

Сопоставление только что установленных двух принципов ведет к соотношениям неопределенности, связанным с именем Гейзенберга. Изучение этого важнейшего вопроса будет более уместным в разделе, который посвящен вероятностной трактовке новой механики.

6. Теория Гамова

Следует сказать несколько слов об одном замечательном применении волновой механики, которое нашел Гамов. Эта теория представляет интерес не только потому, что она объяснила некоторые явления радиоактивности. Она показала так же, как видоизменяется постановка некоторых задач при переходе от старой механики к новой.

Рассмотрим частицу, движение которой тормозится некоторым силовым полем. Пусть силовое поле, которое мы предполагаем статическим, в некоторой точке обращается в нуль, а затем меняет знак. При этом потенциал, определяющий это поле, вначале растет, затем проходит через максимум и, наконец, падает. Фигурально говоря, мы имеем здесь дело с потенциальным барьером. Сможет ли поднимающаяся на этот барьер частица перейти через него? Классическая механика отвечает на этот вопрос следующим образом: да, если эта частица обладает энергией, достаточной, чтобы достигнуть вершины, она опустится по другую сторону, перевалив, таким образом, через барьер. Однако если энергии у частицы недостаточно, чтобы достигнуть вершины, то она никогда не преодолеет этот барьер, ибо, истощив весь свой запас энергии, она застрянет на подъеме и в конце концов скатится назад.

Совсем иначе обстоит дело в волновой механике. Здесь мы должны наглядно представить себе, как распространяется волна, связанная с частицей. Можно показать, что до тех пор, пока высота потенциального барьера меньше энергии частицы, для такой волны этот барьер является аналогом преломляющей среды. Если энергия частицы больше, чем значение потенциала на вершине, то она легко переходит с одной стороны на другую. С этой точки зрения нет никакой разницы между старой и новой теориями. Однако если энергия частицы ниже, чем высота потенциального барьера, то избыточная часть высоты барьера играет для волн роль поглощающей среды. Но согласно волновой теории при падении на поглощающую среду волна все же через нее проходит, правда в сильно ослабленном виде. Это затухание волны таково, что если толщина поглощающей среды достаточно мала, то некоторая часть волны, в действительности очень малая, может просочиться сквозь эту поглощающую среду. Этот факт бесспорно подтвержден в оптике. Переходя к нашей задаче волновой механики, мы видим, что частица, энергия которой слишком мала, чтобы перевалить через вершину потенциального барьера, может пройти через него, если его ширина не слишком велика. Точнее говоря, частица, отскакивающая от потенциального барьера, если ее энергии недостаточна, чтобы перевалить через вершину, имеет, однако, определенную вероятность (конечно, очень малую, но не равную нулю) появиться с другой стороны барьера. Это следует из вероятностей трактовки, связанной с частицей волны, и принципа интерференции. Описанное явление – следствие волновой природы материи часто образно называют туннельным эффектом.

Допустим теперь, что частица заключена в пространстве, со всех сторон ограниченном потенциальными барьерами, высота которых больше ее энергии. Классическая механика утверждает, что частица никогда не сможет вырваться из этой потенциальной ямы. Согласно же волновой механике частица, наоборот, имеет вполне определенную, небольшую вероятность покинуть яму. Волновая механика позволяет вычислить вероятность выхода за единицу времени.

Теперь посмотрим, как Гамов (и почти одновременно с ним Кондон и Гарни) применил эту теорию к изучению задачи радиоактивного распада. Известно, что большое число радиоактивных веществ распадается с испусканием «альфа»-частиц. Можно предположить, что «альфа»-частицы еще до распада заключены в ядрах радиоактивных атомов как в потенциальной яме. Поскольку закон Кулона действует вблизи ядра вплоть до самых близких расстояний от него, вид внешнего склона потенциальной горы известен. Весьма вероятно, что потенциал на определенном расстоянии от ядра в конце концов перестает быть кулоновским: потенциал должен пройти через максимум и затем упасть, однако закон изменения внутреннего склона барьера совершенно неизвестен. Величайшее удивление вызывал у физиков такой факт: энергия «альфа»-частиц, выходящих из распадающихся ядер, была, по-видимому, гораздо ниже той, которая позволила бы им перевалить через окружающий ядро потенциальный барьер. Действительно, можно достаточно далеко исследовать внешний склон потенциального барьера, чтобы обнаружить, что вершина его заведомо превосходит некоторую определенную высоту. Вылетающие же из ядра «альфа»-частицы не обладают энергией, достаточной, чтобы достичь этой высоты. Если исходить из классических представлений, то мы попадаем в тупик. А вот туннельный эффект сразу все объясняет. Заключенные в радиоактивном ядре «альфа»-частицы находятся в потенциальной яме с очень высокими стенками. Тем не менее они имеют определенную вероятность за единицу времени выскочить наружу. Эта вероятность, очевидно, равна постоянной распада радиоактивного вещества. Итак, волновая механика позволяет при условии, если мы точно знаем форму потенциального барьера, вычислить постоянные «альфа»-распада радиоактивных веществ. Сделав разумные предположения о форме этих барьеров, Гамов показал, что результаты теории очень близки к наблюдаемым.

1 ... 34 35 36 37 38 39 40 41 42 ... 55
На этой странице вы можете бесплатно читать книгу Революция в физике - Луи де Бройль бесплатно.
Похожие на Революция в физике - Луи де Бройль книги

Оставить комментарий