Шрифт:
Интервал:
Закладка:
Сравнивая с предыдущим равенством, мы видим, что
Это скромное уравнение означает возможность огромного умножения силы. Поршень, передающий давление, может иметь в сотни, в тысячи раз меньшую площадь. Во столько же раз будет отличаться сила, действующая на большой поршень, от мускульной силы.
При помощи гидравлического пресса можно ковать и штамповать металлы, давить виноград, поднимать тяжести.
Конечно, выигрыш в силе будет сопровождаться проигрышем в пути. Чтобы сжать прессом тело на 1 см, придется рукой пройти путь, во столько раз больший, во сколько раз отличаются силы F2 и F1.
Отношение силы к площади F/S физики называют давлением. Вместо того чтобы говорить: сила в 1 кГ действует на площадь в 1 см2, мы будем говорить короче: давление (его обозначают буквой p) p = 1 кГ/см2.
Вместо отношения F2/F1 = S2/S1 можно теперь записать:
Итак, давления на оба поршня одинаковы.
Наше рассуждение не зависит от того, где расположены поршни, будут ли их поверхности горизонтальны, вертикальны или наклонны. Да и вообще дело не в поршнях. Можно мысленно выбрать два любых участка поверхности, заключающей жидкость, и утверждать, что давления на этой поверхности всюду одинаковы.
Оказывается, таким образом, что давление внутри жидкости одинаково во всех ее точках и во всех направлениях. Иначе говоря, на площадку определенного размера действует одинаковая сила, где бы и как ни была расположена площадка. Это положение носит название закона Паскаля.
Гидростатическое давление
Закон Паскаля справедлив для жидкостей и газов. Однако он не учитывает одного важного обстоятельства – существования веса.
В земных условиях этого нельзя забывать. Весит и вода. Поэтому понятно, что две площадки, находящиеся на разной глубине под водой, будут испытывать разные давления. Чему же равно это различие? Выделим мысленно внутри жидкости прямой цилиндр с горизонтальными донышками. Вода, находящаяся внутри него, давит на окружающую воду. Полная сила этого давления равна весу mg жидкости в цилиндре (рис. 76). Эта полная сила складывается из сил, действующих на основания цилиндра и на его боковую поверхность. Но силы, действующие на противоположные стороны боковой поверхности, равны по величине и противоположны по направлению. Поэтому сумма всех сил, действующих на боковую поверхность, равна нулю. Значит, вес mg будет равен разности сил F2 − F1. Если высота цилиндра равна h, площадь основания S и плотность жидкости ρ, то вместо mg можно написать ρghS. Этой величине равна разность сил. Для того чтобы получить разность давлений, надо разделить вес на площадь S. Разность давлений оказывается равной ρgh.
В соответствии с законом Паскаля давление на разно ориентированные, но находящиеся на одной глубине площадки будет одинаково. Значит, в двух точках жидкости, расположенных одна над другой на высоте h, разность давлений будет равна весу столба жидкости, сечение которого равно единице, а высота h:
Давление воды, обусловленное ее тяжестью, называют гидростатическим.
В земных условиях на свободную поверхность жидкости чаще всего давит воздух. Давление воздуха называют атмосферным. Давление на глубине складывается из атмосферного и гидростатического.
Чтобы подсчитать силу давления воды, нужно знать только размер площадки, на которую она давит, и высоту столба жидкости над ней. Все остальное в силу закона Паскаля не играет роли.
Это может показаться удивительным. Неужели сила, действующая на одинаковые донышки (рис. 77) двух изображенных сосудов, одинакова? Ведь в левом много больше воды. Несмотря на это силы, действующие на дно, в обоих случаях равны ρghS. Это больше веса воды в правом сосуде и меньше веса воды в левом сосуде. В левом сосуде боковые стенки берут на себя вес «лишней» воды, а в правом, напротив, добавляют к весу воды силы реакции. Это интересное обстоятельство называют иногда гидростатическим парадоксом.
Если два сосуда разной формы, но с одинаковыми уровнями воды в них соединить трубкой, то вода не будет переходить из одного сосуда в другой. Такой переход мог бы произойти в том случае, если бы давления в сосудах различались. Но этого нет, и в сообщающихся сосудах независимо от их формы жидкость всегда будет находиться на одном уровне.
Напротив, если уровни воды в сообщающихся сосудах различны, то вода начнет перемещаться, и уровни сравняются.
Давление воды много больше давления воздуха. На глубине 10 м вода давит на 1 см2 с дополнительной к атмосферному давлению силой в 1 кГ. На глубине в километр – с силой в 100 кГ на 1 см2.
Океан в некоторых местах имеет глубину более 10 км. Силы давления воды на таких глубинах исключительно велики. Куски дерева, опущенные на глубину 5 км, уплотняются этим огромным давлением настолько, что после такого «крещения» тонут в бочке с водой, как кирпичи.
Это огромное давление создает большие препятствия исследователям жизни моря. Глубоководные спуски производятся в стальных шарах – так называемых батисферах, или батискафах, которым приходится выдерживать давления выше 1 тонны на 1 см2.
Подводные же лодки могут опускаться лишь на глубину 100–200 м.
Давление атмосферы
Мы живем на дне воздушного океана – атмосферы. Каждое тело, любая песчинка, любой предмет, находящийся на Земле, подвержен давлению воздуха.
Атмосферное давление не такое маленькое. На каждый квадратный сантиметр поверхности тела действует сила около 1 кГ.
Причина атмосферного давления очевидна. Как и вода, воздух обладает весом, а значит, оказывает давление, равное (как и для воды) весу столба воздуха, находящегося над телом. Чем выше мы будем подниматься в гору, тем меньше воздуха будет над нами, а значит, тем меньше станет и атмосферное давление.
Для научных и житейских целей нужно уметь измерять давление. Для этого существуют специальные приборы – барометры.
Изготовить барометр нетрудно. В трубку, закрытую с одного конца, наливают ртуть. Зажав пальцем открытый конец, опрокидывают трубку и погружают ее открытым концом в чашечку с ртутью. При этом ртуть в трубке опускается, но не выливается. Пространство над ртутью в трубке несомненно безвоздушное. Ртуть поддерживается в трубке давлением наружного воздуха (рис. 78).
Каких бы размеров мы ни брали чашечку со ртутью, какого бы диаметра ни была трубка, ртуть всегда поднимется примерно на одну и ту же высоту – 76 см.
Если взять трубку короче 76 см, то она полностью заполнится ртутью, и мы не увидим пустоты. Столб ртути высотой 76 см давит на подставку с той же силой, что и атмосфера.
Столбик ртути высотой 76 см над площадью 1 см2 весит около одного килограмма, точнее – 1,033 кГ. Эту цифру составляет объем ртути 1×76 см3, умноженный на ее плотность – 13,6. Один килограмм на один квадратный сантиметр – это и есть величина нормального атмосферного давления.
Цифра 76 см означает, что таким столбиком ртути уравновешивается столб воздуха всей атмосферы, расположенной над такой же площадкой.
Вычислив величину земной поверхности по формуле 4πR2, найдем, что вес всей атмосферы выражается огромной цифрой 5·1018 кГ.
Барометрической трубке можно придать самые различные формы, важно лишь одно: один конец трубки должен быть закрыт так, чтобы над поверхностью ртути не было воздуха. На другой уровень ртути действует давление атмосферы.
Ртутным барометром можно измерить атмосферное давление с очень большой точностью. Разумеется, не обязательно брать ртуть, годится и любая другая жидкость. Но ртуть – наиболее тяжелая жидкость, и высота столба ртути при нормальном давлении будет наименьшей.
Для измерения давления пользуются различными единицами. Часто просто указывают высоту столба ртути в миллиметрах. Например, говорят, что сегодня давление выше нормы, оно равно 768 мм Hg (т.е. ртути).
Зная плотность ртути, всегда можно пересчитать давление на кГ/см2. Каждый миллиметр ртутного столба равен 1,36 Г/см2.
Давление в 760 мм Hg называют иногда физической атмосферой. Давление в 1 кГ/см2 называют технической атмосферой.
Физики часто пользуются также единицей давления бар. 1 бар = 106 дин/см2. Так как 1 Г = 981 дин, то 1 бар равен примерно одной атмосфере. Точнее, нормальное атмосферное давление равно примерно 1013 миллибар.
- Физика – моя профессия - Александр Китайгородский - Физика
- Новый этап в развитии физики рентгеновских лучей - Александр Китайгородский - Физика
- Теория Вселенной - Этэрнус - Физика
- Физика движения. Альтернативная теоретическая механика или осознание знания - Александр Астахов - Физика
- 4a. Кинетика. Теплота. Звук - Ричард Фейнман - Физика
- Ткань космоса. Пространство, время и текстура реальности - Брайан Грин - Физика
- Ткань космоса: Пространство, время и текстура реальности - Брайан Грин - Физика
- Физика неоднородности - Иван Евгеньевич Сязин - Прочая научная литература / Физика
- Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер - Физика
- Солнечное вещество (сборник) - Матвей Бронштейн - Физика