Шрифт:
Интервал:
Закладка:
Рисунок 8. Нисходящие информационные потоки в кортикальной области.
Последний анатомический штрих: когда аксоны покидают слой 6 чтоб уйти в другие места, они упаковываются в оболочку из белой жировой субстанции, называемой миелином. Эта так называемое белое вещество похоже на изоляцию электрических проводов в вашем доме. Оно помогает предотвратить искажение сигналов и повысить скорость их прохождения, увеличивая ее до двухсот миль в час. Когда аксоны покидают белое вещество, они входят в новую кортикальную колонку в слой 6.
* * *В конечном счете есть еще один метод непрямой коммуникации кортикальных областей.
Прежде чем я опишу его в деталях, я хочу напомнить вам об автоассоциативной памяти, которая обсуждалась в главе 2. Как вы помните, автоассоциативная память может быть использована для хранения последовательностей паттернов. Когда выход группы искусственных нейронов используется как обратная связь на входы всех нейронов, и к обратной связи добавляется задержка, то паттерны обучаются следовать один за другим в последовательности. Я верю, что кортекс использует тот же самый базовый механизм для хранения последовательности, хотя с небольшими дополнительными ухищрениями. Вместо того, чтоб формировать автоассоциативную память из нейронов, он формирует автоассоциативную память из кортикальных колонок. Выход всех колонок направляется к слою 1. Таким образом, слой 1 содержит информацию о том, какие колонки были только что активны.
Давайте пройдемся по элементам, как показано на рисунке 9. Уже давно известно, что особенно большие клетки в слое 5 в моторном кортексе (область M1) направляет прямые соединения к мышцам и моторным областям в спинном мозге. Эти клетки буквально приводят в действие мышцы и заставляют вас двигаться. Когда вы либо говорите, печатаете или выполняете какие то сложные действия, эти клетки возбуждаются скоординированным образом, заставляя ваши мышцы сокращаться.
Рисунок 9. Как текущее состояние и моторное поведение широко взаимодействуют через таламус.
Совсем недавно исследователи открыли, что гигантские клетки в слое 5 могут играть роль в поведении в других частях кортекса, не только в моторных областях. Например, большие клетки в визуальном кортексе проецируются на часть мозга, управляющую движением глаз. Таким образом, визуальные области кортекса, такие как V2 и V4, не только обрабатывают визуальную информацию, но также влияют на движение глаз, и следовательно на то, что вы видите. Большие клетки слоя 5 наблюдаются по всему неокортексу, во всех областях, претендуя на более значительную роль во всех видах движений.
В дополнение к поведенческой роли, аксоны этих больших клеток слоя 5 раздваиваются. Одна ветвь идет к части мозга, называемой таламусом, показанной на рисунке 9 круглым объектом. Таламус человека имеет форму и размер двух яиц небольших птиц. Он располагается в самом центре мозга, на верхушке старого мозга и окружен белым веществом и кортексом. Таламус получает множество аксонов от всех частей кортекса и посылает аксоны обратно к тем же самым областям. Большинство деталей эти соединений известно, но сам по себе таламус сложная структура и его роль не вполне ясна. Но таламус необходим для нормальной жизни; повреждение таламуса ведет к постоянному вегетативному состоянию.
Есть несколько путей из таламуса в кортекс, но только один интересен нам сейчас. Этот путь начинается в больших клетках слоя 5, которые проецируются на считающийся неспецифическим класс таламических клеток. Неспецифические клетки проецируют аксоны обратно в слой 1 во многие различные области кортекса. Например, клетки 5-го слоя со всей площади областей V2 и V4 посылают аксоны в таламус, а таламус посылает информацию обратно в слой 1 на всю площадь областей V2 и V4. Другие части кортекса делают то же самое; клетки 5-го слоя с различных кортикальных областей проецируются на таламус, который посылает информацию обратно к 1-му слою этих же самых и ассоциированных областей. Я предполагаю, что эти контуры в точности похожи на обратные связи с задержками, которые позволяют модели автоассоциативной памяти запоминать последовательности.
Я сейчас должен упомянуть о двух путях поступления информации в слой 1. Вышестоящие области кортекса распространяют активность по слою 1 нижестоящих областей. Активные колонки в этих областях также распространяют активность через слой 1 в тех же самых областях через таламус. Мы можем думать об этих входах в слой 1 как о названии песни (вход из вышестоящих областей) и как о позиции в песне (задержанная активность от активных колонок в этой же области). Таким образом, слой 1 принимает большинство той информации, которая нам нужна для предсказания того, когда колонка должна быть активной — имя последовательности и позиция в последовательности. Используя эти два сигнала в слое 1, область кортекса может запоминать и вспоминать множество последовательностей паттернов.
6.7. Как работают области кортекса: деталиДержа в уме эти три вещи — схождение паттернов, идущих вверх по иерархии, расхождение паттернов идущих вниз по иерархии и обратная связь с задержкой через таламус — мы можем приступить к рассмотрению того, как области кортекса выполняют необходимые им функции. Вот что мы хотим знать:
1. Как область кортекса классифицирует поступающую информацию (аналогично корзинам)?
2. Как она запоминает последовательности паттернов (такие как интервалы мелодии или последовательности «глаз нос глаз» при рассматривании лица)?
3. Как она формирует постоянные паттерны или «названия» последовательностей?
4. Как она делает конкретные предсказания (встреча поезда в правильное время или предсказание конкретной ноты в мелодии)?
Давайте начнем с предположения, что колонки в области кортекса похожи на корзины, которые мы использовали при классификации цветных бумажек. Каждая колонка представляет метку корзины. Клетки в слое 4 в каждой колонке получают входные волокна от нескольких областей ниже и возбуждаются, если поступает правильная комбинация. Когда возбуждаются клетки в слое 4, это «вынесение решения» о том, что информация удовлетворяет метке. По аналогии с сортировкой бумажек, информация может быть неоднозначной, так что возможно несколько колонок могу соответствовать этой информации. Мы хотим, чтобы область кортекса принимала однозначное решение; бумажка либо красная, либо оранжевая, но не то и другое одновременно. Колонка с наиболее интенсивным входом должна предотвратить возбуждение других колонок.
В мозге есть клетки, которые делают именно это. Они интенсивно тормозят другие нейроны в соседних колонках, эффективно приводя только к одному победителю. Эти тормозные клетки воздействуют только на область, окружающую колонку. Таким образом, даже если имеется значительное торможение, все равно большинство колонок в области может быть активными одновременно. (В реальном мозге нет ничего, что бы представлялось единственным нейроном или колонкой). Для того, чтоб облегчить дальнейшее понимание, вы можете временно предположить, что область выбирает одну и только одну колонку-победителя. Но держите в уме, что одновременно будут активны множество колонок. Актуальный процесс, используемый областью кортекса для классификации информации и то, как она запоминает, слишком сложно и не до конца понятно. Я не буду пытаться протащить вас через выводы. Вместо этого я хочу предположить, что область кортекса классифицирует информацию как набор активных колонок. Затем мы сможем сфокусироваться на последовательностях и названиях последовательностей.
Как кортикальная область хранит последовательность классифицированных паттернов? Я уже предлагал ответ на этот вопрос, но я не вдавался в детали. Вообразите, что вы колонка из нейронов, и информация из нижележащих областей заставляет одну из клеток слоя 4 возбуждаться. Вы счастливы и клетка из вашего 4-го слоя заставляет также возбуждаться клетки в слоях 2 и 3, затем 5 и 6. Колонка целиком становится активной, когда возбуждена из нижестоящих областей. Ваши клетки в слоях 2,3 и 5 имеют тысячи синапсов в слое 1. Если некоторые из этих синапсов активны, когда возбуждаются клетки в слоях 2, 3 и 5, эти синапсы усиливаются. Если это происходит достаточно часто, эти синапсы в слое 1 становятся настолько сильными, что заставляют возбуждаться клетки в слоях 2, 3 и 5 даже если клетки 4-го слоя не возбуждены — значит, некоторые колонки могут активизироваться, даже не получая информации от нижестоящих областей кортекса. В этом случае клетки в слоях 2, 3 и 5 обучаются предсказывать момент, когда они должны возбудиться от паттерна в слое 1. До обучения колонка может становиться активной только если возбуждается из 4-го слоя. После обучения колонка может активизироваться частично по памяти. Когда колонка активизируется от синапсов в слое 1, ей легче возбудиться от нижестоящих областей. Это предсказание. Если бы колонка могла говорить, она сказала бы: — «Когда я активизировалась в прошлом, определенное множество синапсов в слое 1 были активны. Так что когда я снова увижу это определенное множество, я начну возбуждаться заранее».
- "Броненосец "Император" Александр II" - В. Арбузов - Техническая литература
- 100 великих технических достижений древности - Анатолий Сергеевич Бернацкий - Исторические приключения / Техническая литература / Науки: разное / Энциклопедии
- Стратегическая авиация России. 1914-2008 гг. - Валерий Николаевич Хайрюзов - Военная техника, оружие / Техническая литература / Транспорт, военная техника
- Материаловедение для дизайнеров интерьеров. Том 2 - Елена Володина - Техническая литература
- Инженерная эвристика - Нурали Латыпов - Техническая литература
- Разведение и выращивание индюков, перепелок и цесарок - Юрий Пернатьев - Техническая литература
- Истребитель Ла-9 - М. Орлов - Техническая литература
- Оправдание OSS - Игорь Бакланов - Техническая литература
- Антиштраф. 100 приемов защиты от беспредела ГИБДД на дорогах - О. Саитова - Техническая литература
- Россия - родина Радио. Исторические очерки - Владимир Бартенев - Техническая литература