Шрифт:
Интервал:
Закладка:
Мандельброт по праву называет множество, названное в его честь, «бесконечно прекрасным». Его тонкая геометрия, еще отнюдь не расшифрованная до конца, содержит в себе бесконечный бестиарий зашифрованных хаотических процессов. Как этот бесконечно сложный объект – как говорят, самый сложный во всей математике – возник из такой простой формулы? С точки зрения английского физика и математика сэра Роджера Пенроуза, это нежданное богатство – яркий пример вечной платоновской реальности математики. «Множество Мандельброта – не порождение человеческого разума, а открытие, – писал Пенроуз. – Множество Мандельброта никто не создавал – оно существует, как гора Эверест!»
«Фракталист» – непоследовательная автобиография, в этой книге прослеживается своя фрактальная прерывистость. Несомненно, если бы автор прожил дольше, текст вышел бы глаже: его любовь пересматривать и переписывать неудачные черновики, как пишет Мандельброт, сопоставима с дотошностью Бальзака. Иногда на этих страницах встречаются и неприятно-высокомерные ноты («Пусть с моей стороны это и будет дерзостью, я заявляю…»), и прозрачные намеки на оскорбленное достоинство («Мне не нужна власть, я ни у кого не прошу одолжений… Академический мир не счел меня достойным».) Автор не особенно старается объяснить суть своих математических инноваций непосвященному читателю, в частности, не рассказывает, как понятие размерности служит критерием прерывистости фрактала (например, побережье Британии так извилисто, что его фрактальная размерность равна 1,25, то есть оно находится где-то между одномерной плавной кривой и двумерной гладкой поверхностью).
Впрочем, Мандельброта можно простить за то, что он не стал останавливаться на подобных технических подробностях. Его тон мемуариста тяготеет скорее к философии. Мир, в котором мы живем, отмечает он, – это «безбрежный океан сложности». Однако есть в нем и два «островка простоты». Во-первых, это евклидова простота гладких форм, открытая античными мыслителями. Во-вторых, это фрактальная простота самоподобной шероховатости, по большей части открытая самим Мандельбротом. Его геометрическая интуиция позволила ему выявить новую платоновскую сущность, свойственную неожиданно широкому диапазону вещей и явлений – от простой цветной капусты до утонченного множества Мандельброта. Восторг, с каким он относится к шероховатости, изломанности и сложности в формах, которые другие математики считали «чудовищными» и «патологическими», носит отчетливый отпечаток современности. И в самом деле, фракталы Мандельброта с их изысканными узорами, повторяющимися на все более и более мелких масштабах, заставляют вспомнить определение красоты, которое дал Бодлер: C’est l’infini dans le fini – «Бесконечное в конечном».
Часть четвертая. Большие размерности, абстрактные карты
Глава девятая. Геометрические создания
У нашего мира есть одна особенность, над которой останавливаются поразмыслить лишь немногие: это вопрос о том, сколько в нем измерений. Хотя довольно сложно сказать, что, собственно, это такое – измерение, – все же нам вполне очевидно, что окружающие нас предметы и пространство, в котором мы движемся, структурированы тремя измерениями, и их удобно называть высотой, шириной и глубиной. Это воспринимали как данность даже философы. Аристотель в самом начале трактата «О небе» пишет: «Три [измерения] суть все [измерения]»[13]. Почему? Потому что, утверждает он не без мистического флера, в числе 3 содержится начало, середина и конец, а следовательно, оно полно и совершенно. Менее мистическое доказательство трехмерности природы предложил александрийский астроном Птолемей. Если поставить три палки взаимно перпендикулярно и так, чтобы они сходились в одной точке, заметил Птолемей, четвертую добавить невозможно, поэтому большие размерности «не подлежат никакой мере и никакому определению». Впоследствии логику Птолемея подтвердили Галилей и Лейбниц, которые объявили, что три измерения пространства – это вопрос геометрической необходимости.
О «четвертом измерении» первыми заговорили кембриджские платоники, но они, похоже, имели в виду нечто скорее духовное, нежели пространственное. Один из них, Генри Мор, в 1671 году предположил, что четвертое измерение – это обиталище платоновских идей, а также, весьма вероятно, призраков. Примерно в то же время Декарт сделал на первый взгляд безобидный шаг – добавил дополнительную переменную к своей геометрии координат, что позволило ему дать определение четырехмерным sursolides. Робкие современники сочли это недопустимым, и в 1685 году математик Джон Уоллис списал это изобретение Декарта со счетов, назвав его «чудовищем по природе своей, менее правдоподобным, чем химера или кентавр!»
Кант, по крайней мере в ранних сочинениях, заигрывал с идеей, что трехмерное пространство может оказаться случайностью: возможно, предполагал философ, Господь создал и другие миры с другим числом измерений. Однако ко времени написания «Критики чистого разума» Кант решил, что пространство – не объективное свойство реальности, а навязано сознанием, чтобы привнести порядок в бытие. Более того, считал Кант, пространство в принципе может быть только евклидовым и трехмерным – это мы называем «аподиктической уверенностью». В 1817 году Гегель без особых доказательств предположил, что необходимость трех измерений основывается на самой природе идеи пространства.
Тем временем в мире математики уже приближалась революция. В первые десятилетия XIX века Гаусс, Лобачевский и Бойяи независимо исследовали «криволинейные геометрии», где кратчайшее расстояние между двумя точками уже не было прямой линией. В сороковые годы XIX века Артур Кэли и Герман Грассман, также независимо, расширили евклидовские рамки на пространства с числом измерений больше трех. Все эти новшества свел в единую величественную систему Бернхард Риман (1826–1866). В лекции перед сотрудниками Гёттингенского университета 10 июня 1854 года под названием «О гипотезах, лежащих в основании геометрии», Риман опроверг евклидову ортодоксию, которая доминировала и в математике, и, разумеется, в западной мысли целых 2000 лет. По Евклиду, у точки ноль измерений, у линии – одно, у плоскости – два, у тела – три. Четырех измерений ни у чего быть не может. Более того, евклидово пространство «плоское»: параллельные линии в нем не пересекаются. Риман вышел за пределы обоих предпосылок и переписал уравнения геометрии так, чтобы они описывали пространства любой кривизны и любых размерностей. При этом он определил набор чисел, так называемый тензор, который характеризует кривизну пространства высоких размерностей в каждой точке.
Неевклидова n-мерная геометрия Римана была сугубо интеллектуальным изобретением, ее не вдохновляли никакие потребности тогдашней науки. 60 лет спустя его тензорное исчисление обеспечило
- Необъятный мир: Как животные ощущают скрытую от нас реальность - Эд Йонг - Биология / Зарубежная образовательная литература / Природа и животные
- История античной науки. Открытия великих ученых и мыслителей древности - Джордж Сартон - Зарубежная образовательная литература / Исторические приключения
- Квант. Путеводитель для запутавшихся - Джим Аль-Халили - Зарубежная образовательная литература / Прочая научная литература / Физика
- Философия запаха. О чем нос рассказывает мозгу - Энн-Софи Барвич - Биология / Зарубежная образовательная литература / Психология
- Закат Западного мира. Очерки морфологии мировой истории. Том 2 - Освальд Шпенглер - Зарубежная образовательная литература / История / Культурология / Прочая научная литература / Обществознание
- Философия: Кому она нужна? - Рэнд Айн - Зарубежная образовательная литература
- Османская империя. Шесть веков истории - Оливье Буке - Зарубежная образовательная литература / Исторические приключения / История
- Чудеса без чудес (С приложением описания химических опытов) - Валерий Васильевич Борисов - Зарубежная образовательная литература / Религиоведение / Химия
- Сообщество разума - Марвин Мински - Зарубежная образовательная литература / Прочая научная литература
- Что такое интеллектуальная история? - Ричард Уотмор - Зарубежная образовательная литература / История