Шрифт:
Интервал:
Закладка:
А двухмерный паренек (из игры «Марио») не способен вообразить трехмерность, ведь внутри своей плоскости он не может даже указать направление, куда могла бы смотреть третья пространственная координата.
Чтобы выбраться из двухмерной плоскости, пареньку (из игры «Марио») необходимо двигаться вдоль третьей пространственной координаты, ну а нам, трехмерным существам, соответственно нужно двигаться вдоль четвертой пространственной координаты…
Но нам, как трехмерным существам недостаточно воображения, чтобы представить четырехмерное пространство, так как мы даже не представляем, что такое пространство вообще существует!
Хоть мы и являемся жителями трехмерного мира, мы не обладаем трехмерным зрением, да и объекты на примере куба, мы можем воспринимать, как трехмерный объект только в движении (тогда будет видна его вся трехмерная структура). Это можно представить на примере если мы стоим фронтом к дому, то видим его прямоугольную форму, что зрительно показывает только его двухмерную составляющую, но пройдя немного вправо или лево, мы можем видеть уже две части дома и у нас уже вырисовывается трех мерная структура.
Тем самым получается, что мы хоть и не обладаем трехмерным зрения, но все-равно способны воспринимать трехмерные объекты
А как насчет того, чтобы попробовать воспринять четырехмерный объекты!? Ведь трехмерный объект мы способны воспринять. Но для начала мы попробуем построить четырехмерный объект, от меньшего измерения к большему, посмотрим, как получается трехмерный куб на плоскости.
Для начала мы видим материальную точку, назовем ее нульмерным кубом, в нем пока нет измерений.
«Нульмерный куб или материальная точка»
Скопируем ее и разместим параллельно, а затем соединим ребром с ее копией и у нас получился одномерный куб или отрезок.
«Одномерный куб или отрезок»
Скопируем этот одномерный куб (отрезок), разместим параллельно этому одномерному кубу и соединим вершинами. У нас получится двухмерный куб или квадрат.
«Двухмерный куб или квадрат»
Чтобы получить трехмерный куб, нам необходимо скопировать двухмерный куб и соединить их между собой соответствующими вершинами, получится классическое геометрическое представление трехмерного куба на плоскости. И такое представление будет неверно, если мы хотим изобразить трехмерный куб с точки зрения, как мы фактически воспринимаем этот куб, так как задняя грань такого куба находиться дальше от наших глаз и поэтому она должна быть меньше.
«Трехмерные кубы; с права классический трехмерный геометрический куб; слева изображен трехмерный куб таким, как мы его воспринимаем в действительности»
Попробуем скопировать кубик другим образом, скопируем кубик и уменьшим его, а затем поместим внутрь и соединим соответствующими вершинами, это все еще трехмерный куб размещенный на плоскости, но мы уже как будто смотрим на него сверху, это тоже двухмерная проекция трехмерного куба.
«Трехмерный куб такой, каким мы его воспринимаем в действительности»
А теперь попробуем изобразить проекцию четырехмерного гиперкуба, по все тому же принципу, мы копируем трехмерный куб, размещаем его поблизости и соединяем соответствующими вершинами и у нас получится четырехмерный гиперкуб.
«Четырехмерный гиперкуб»
Эта проекция скорей всего является не точной проекцией четырехмерного гиперкуба, по типу, как было раньше с трехмерным кубом.
Поэтому, по тому же самому лекалу, мы попробуем снова построить четырехмерный гиперкуб. Мы возьмем трех мерный куб, и разместим его копию внутри первого куба, соединим соответствующие вершины. В результате мы получим трехмерную проекцию четырехмерного гиперкуба, проецируемая на двумерную плоскость.
«Четырехмерный гиперкуб или Тессеракт»
Тут, конечно, сложно понять почему этот гиперкуб четырехмерный, ведь вроде это обычная трехмерная фигура и это как раз-таки потому, что мы видим проекцию проекции.
Это можно представить на примере обычного трехмерного куба. Если мы смотрим просто на него, то видим квадрат, а при вращении нам становится очевидно, что он трехмерный.
И так чтобы лучше понять четырехмерный гиперкуб, нужно начать его вращать и вот тут начинается самое интересное.
«Вид на четырехмерный гиперкуб в движении»
Это становится не похожим на вращение, а больше походит на деформацию, все грани такого гиперкуба — это равные по площади квадратики (при вращении), но здесь они меняют форму, равно как при вращении трехмерного куба.
Если задуматься и абстрагироваться от пространственного мышления, то мы можем представить их как простые квадратики, которые меняют свою форму на плоскости.
Чтобы лучше себе это представить, давайте изложим вышеописанное по следующим критериям:
Трёхмерная фигура, пересекая плоскость, двигаясь перпендикулярно трем ее пространственным координатам вдоль четвертой, недоступной для обитателей этого мира координаты. Для трехмерного сознания все это движение выглядит, как деформация этого предмета (явления и т. д.), какая-то мистическая деформация. Хотя если взглянуть из вне (из четырехмерного пространства), то будет видно, что это всего лишь движение (а не деформация).
То есть, чтобы увидеть в этой деформации — движение, необходимо смотреть на этот процесс из четырехмерного пространства, люди (с трехмерным сознанием) на это не способны.
Если перевести это на простой человеческий язык, то, когда происходит движение в четырехмерном мире, мы, как люди, с трехмерным сознанием, не способны осознать и воспринять это движение, оно нам не доступно, но в тоже время, это не означает, что такого движения нет. Это движение существует (что математически подтверждается), более того, оно влияет на нашу действительность, ибо это пространство является по отношению к нам (трехмерным существам), пространством более высокого порядка.
Исходя из вышеизложенного, мы можем подвести небольшой итог: 1) научные деятели в естественно-научной дисциплине доказали, что существование четырехмерного измерения математически реально; 2) мы, как существа обладающие трехмерным сознанием воспринять четырехмерное измерение не способны; 3) мы наглядно увидели, что наш трехмерный мир является неотъемлемой частью четырехмерного мира, а также это может указывать на тот факт, что наши миры (трехмерный и четырехмерный, в том числе другие) постоянно коррелируют между собой и это математический факт!
Если мы попробуем посмотреть, так сказать, на мир со стороны, то нам может открыться поразительное виденье, которое заключается в том, что все миры, в том числе и наш, трехмерный мир, прибывает внутри огромного Тессеракта, который находиться в постоянном динамическом движении, тут сразу, я бы провел аналогию с потоком сознания. Психологи знают, что человеческое сознание никогда не находится в полном покое!
Так
- Истинный творец всего. Как человеческий мозг сформировал вселенную в том виде, в котором мы ее воспринимаем - Николелис Мигель - Прочая научная литература
- Мышление. Системное исследование - Андрей Курпатов - Прочая научная литература
- Говорящие птицы - Валерий Ильичев - Прочая научная литература
- Быть собой: новая теория сознания - Анил Сет - Прочая научная литература / Науки: разное
- Кубанское казачество и его атаманы - Федор Щербина - Прочая научная литература
- 49 загадок окружающего нас мира. Удивительные открытия и потрясающие теории, которые меняют представления об окружающей действительности - Григорий Жадько - Прочая научная литература
- Неизвестный квадрат Леваневского - Юрий Сальников - Прочая научная литература
- Эволюция Вселенной и происхождение жизни - Пекка Теерикор - Прочая научная литература
- На 100 лет вперед. Искусство долгосрочного мышления, или Как человечество разучилось думать о будущем - Роман Кржнарик - Прочая научная литература / Обществознание / Публицистика
- Саммари книги «Невидимая горилла. Эксперимент, который раскрыл, почему внимание мешает сосредоточиться, память подводит, а интуиция обманывает» - Коллектив авторов - Зарубежная образовательная литература / Прочая научная литература / Психология