Рейтинговые книги
Читем онлайн (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 24 25 26 27 28 29 30 31 32 ... 63

Спустя некоторое время, когда курс лекций был прочитан, студент снова подошел к профессору. И сообщил, что эксперимент продолжается; он же теперь судится со своим бывшим работодателем, который нашел психиатра, готового засвидетельствовать паранойю бывшего работника.

Одной из навязчивых, по мнению психиатра, идей был якобы выдуманный священник из восемнадцатого века, на реальности существования которого настаивал бывший работник. В частности, психиатр высмеивал утверждение, будто этот священник, увлекаясь на досуге математикой, изобрел причудливую теорию вероятностей. Автор идеи утверждал, что священника звали Томас Байес. А теория его описывала следующее: каким образом можно оценить вероятность того, что некое событие произойдет, если произойдет некое другое событие. Каковы шансы того, что этот студент станет объектом скрытых наблюдений психологов? Следует признать, они невелики. Но что, если чья-то жена высказывает вслух тайные мысли мужа, а коллега за кружкой пива в непринужденной обстановке мимоходом предсказывает увольнение? Студент уверял, что теория Байеса демонстрировала, каким образом необходимо изменить первоначальные подсчеты в свете новых доказательств. И во время суда студент вывалил на судей мешанину из формул и вычислений, подкреплявших его гипотезу, делая вывод о том, что дополнительные доказательства подтверждают: в 999 999 из 1 000 000 его предположения о тайном эксперименте верны. Психиатр со стороны работодателя утверждал, что и священник с математическими наклонностями, и теория — плоды воспаленного воображения бывшего работника.

Студент попросил профессора помочь с опровержением этого утверждения. Профессор согласился. И у него были на то веские причины, потому как Томас Байес, родившийся в Лондоне в 1701 г., действительно был священником, имевшим приход в Танбридж-Уэлс. Байес умер в 1761 г и был похоронен на территории лондонского парка Банхилл-Филдс, в той же самой могиле, что и его отец Джошуа, также служитель церкви. Томас Байес в самом деле изобрел теорию «условных вероятностей», чтобы доказать, что теория вероятностей может распространяться не только на независимые события, но и на события, чьи исходы зависят друг от друга. Например, и вероятность того, что случайно выбранный человек окажется психически больным, и вероятность того, что случайно выбранный человек утверждает, будто жена читает его мысли, весьма низки, однако вероятность того, что человек психически болен, если он утверждает, будто жена читает его мысли, уже гораздо выше, как и вероятность того, что человек утверждает, будто жена читает его мысли, если при этом он психически болен. Как все эти вероятности связаны между собой? Ответ следует искать в области условных вероятностей.

Профессор дал показание под присягой: подтвердил реальное существование Байеса и его теории, хотя и не высказался в поддержку специфических и сомнительных вычислений, которые, как утверждал теперь уже бывший студент, доказывали его вменяемость. Жалость вызывает не сам шизофреник, человек уже немолодой, а команда врачей и юристов, которую сколотило обвинение. Печален тот факт, что некоторые люди больны шизофренией, но хотя лекарства и могут помочь в излечении болезни, они не в силах побороть невежество. Как мы дальше убедимся, неосведомленность об идеях Томаса Байеса лежит в основе многих серьезных ошибок, будто то медицинские диагнозы или судебные решения. Во время же обучения будущих врачей и юристов с невежеством этим редко когда борются.

И в наши дни мы выносим суждения согласно теории Байеса. В одном фильме рассказывается об адвокате, у которого была замечательная работа, очаровательная жена, идеальная семья. Он любил жену и дочь, но ощущал в своей жизни некую пустоту. Однажды вечером он возвращается на трамвае домой и замечает красивую женщину — она с задумчивым видом смотрит из окна танцевальной студии. Проезжая на следующий день и через день, он ищет ее взглядом, с каждым разом все больше подпадая под ее чары. Наконец в один из вечеров он поддается порыву: сходит с электрички и записывается на танцевальные занятия в студию, надеясь увидеть ту женщину. Однако когда видит ее вблизи, чарующий образ, который преследовал его в воображении, улетучивается. Тем не менее он увлекается, однако не той женщиной, а танцами.

Свое увлечение он скрывает и от семьи, и от коллег по работе, выдумывая разные предлоги, чтобы вечером ускользнуть из дому. Наконец жена узнает, что он вовсе не засиживается за работой допоздна, как он говорит. Она думает: вероятность того, что он лжет о сверхурочной работе, гораздо больше при условии, что у него любовная связь, нежели при условии, что никакой любовной связи нет. И приходит к выводу: он все-таки лжет. Однако жена ошибается не столько в своих выводах, сколько в рассуждениях: она путает вероятность того, что муж избегает ее, если у него связь, с вероятностью того, что у него связь, если он ее избегает.

Это довольно распространенная ошибка. Предположим, начальник стал отвечать на ваши электронные письма с запозданием. Многие сочтут это знаком скорого заката собственной карьеры, потому что если вашей карьере подходит конец, велика вероятность того, что босс перестает отвечать на ваши письма оперативно. Однако босс может запаздывать с ответом и потому, что занят или у него заболела мать. Так что вероятность того, что ваша карьера подходит к концу, если начальник отвечает на ваши письма не сразу, гораздо ниже, чем вероятность того, что ваш начальник станет отвечать на письма с задержкой, если вас ждет увольнение. Своей привлекательностью многие теории тайных сговоров обязаны неправильному пониманию вышеприведенных логических выкладок. То есть все дело в путанице: вероятность того, что ряд событий произойдет, если события эти являются результатом тайного сговора, путают с вероятностью того, что тайный сговор существует, если имеет место ряд событий.

На вероятность влияет тот факт, что событие произойдет, если или при условии, что произойдут другие события. В этом и заключается теория Байеса. Чтобы понять принцип ее действия, обратимся к другой задаче, которая имеет отношение к задаче о двух дочерях из главы 3. Предположим, что у двоюродной сестры двое детей. По условию задачи о двух дочерях вам известно, что один ребенок или оба — девочки, и вы пытаетесь вспомнить, как же оно на самом деле: одна девочка или две? Если в семье двое детей, какова вероятность (при условии, что один ребенок — девочка) того, что оба ребенка — девочки? В главе 3 мы не подходили к задаче с такой стороны, однако это «если» переводит задачу в плоскость условных вероятностей. Если бы это «если» отсутствовало, вероятность того, что оба ребенка — девочки, была бы равна 1 из 4 случаев, то есть 4 вариантов очередности рождения (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка). Однако дополнительные сведения о том, что в семье одна девочка точно есть, сводит вероятность к 1 из 3. И это потому, что если один из детей — девочка, для этой семьи существуют всего 3 возможных варианта — (мальчик, девочка), (девочка, мальчик), (девочка, девочка), и лишь 1 из 3 соответствует исходу, при котором оба ребенка — девочки. Возможно, это простейший способ понять идеи Байеса — все дело исключительно в подсчетах. Сначала надо обозначить пространство элементарных событий, то есть сделать список всех возможностей, а вместе с ними и их вероятностей, если они не равны (вообще-то способ хорош для решения любой запутанной задачи на тему вероятностей). Далее надо вычеркнуть те возможности, которые исключаются условиями (в данном случае условие: «хотя бы один ребенок — девочка»). В остатке: возможности и соответствующие им вероятности.

Возможно, все это покажется очевидным. Ничуть не усомнившись в своих силах, вы решите, что могли бы додуматься до этого и без помощи дражайшего преподобного Байеса, после чего дадите себе слово, что когда уединитесь в уборной в следующий раз, захватите почитать какую-нибудь другую книжку. Поэтому прежде чем мы продолжим, рассмотрим несколько измененную задачу про двух дочерей — ее решение может оказаться гораздо более неожиданным{103}.

Вариант таков. В семье двое детей; какова вероятность того, что если один из детей — девочка по имени Флорида, то и другой ребенок тоже девочка? Да, вам не показалось: я назвал девочку Флоридой. Может, вы и подумаете на имя, что оно выбрано наугад, на самом деле это не так — кроме того, что оно обозначает название штата, где полно кубинских иммигрантов, апельсинов и пожилых людей, которые меняют свое просторное жилье в северной части страны на радость обозревать пальмы и играть в бинго, это еще и настоящее имя. В самом деле, оно входит в 1 000 самых популярных женских имен за первые тридцать лет прошлого века в Америке. Я выбрал его совсем неспроста, потому что часть загадки заключается в вопросе: есть ли что-то в имени Флорида, что влияет на вероятность, и если есть, то что? Однако я забегаю вперед. Прежде чем мы продолжим, обдумайте такой вопрос: если брать задачу с девочкой по имени Флорида, остаются ли шансы на семью из двух девочек такими же: 1 из 3 (как в задаче с двумя дочерьми)?

1 ... 24 25 26 27 28 29 30 31 32 ... 63
На этой странице вы можете бесплатно читать книгу (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов бесплатно.
Похожие на (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов книги

Оставить комментарий