Рейтинговые книги
Читем онлайн Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 55

  Принцип относительности и другие принципы инвариантности

  В основе О. т. лежит принцип относительности, согласно которому в физической системе, приведённой в состояние свободного равномерного и прямолинейного движения относительно системы, условно называется «покоящейся», для наблюдателя, движущегося вместе с системой, все процессы происходят по тем же законам, что и в «покоящейся» системе. Говорят, что движущаяся система получается из «покоящейся» преобразованием движения и что принцип относительности выражает инвариантность (независимость) законов природы относительно преобразований движения.

  Справедливость принципа относительности означает, что различие между состояниями покоя и равномерного прямолинейного движения не имеет физического содержания. Если физическая система В движется равномерно и прямолинейно (со скоростью V ) относительно системы А , то с тем же правом можно считать, что А движется относительно В (со скоростью V ). Термин «принцип относительности» связан с тем, что если преобразованию движения подвергнуть систему движущихся тел, то все относительные движения этих тел останутся неизменными.

  Наряду с принципом относительности из опыта известны и др. принципы инвариантности, или, как ещё говорят, симметрии, законов природы. Любой физический процесс происходит точно так же:

  если осуществить его в любой др. точке пространства; эта симметрия выражает равноправие всех точек пространства, однородность пространства;

  если систему, в которой происходит процесс, повернуть на произвольный угол; эта симметрия выражает равноправие всех направлений в пространстве, изотропию пространства;

  если повторить процесс через некоторый промежуток времени; эта симметрия выражает однородность времени.

  Т. о., имеет место инвариантность законов природы по отношению к четырём типам преобразований: 1) переносу в пространстве, 2) вращению в пространстве, 3) сдвигу во времени, 4) преобразованию движения. Симметрии 1—4 выполняются точно только в изолированной от внешних воздействий системе, т. е. если можно пренебречь воздействием на систему внешних факторов; для реальных систем они справедливы лишь приближённо.

  Изучение свойств преобразований 1—2 составляет предмет евклидовой геометрии трёхмерного пространства, если рассматривать её как физическую теорию, описывающую пространственные свойства физических объектов (при этом под переносом следует понимать преобразование параллельного переноса).

  При скоростях тел u , сравнимых со скоростью с , обнаруживается тесная связь и математическая аналогия между преобразованиями 1, 3 и 2, 4. Это даёт основание говорить об О. т., в которой все преобразования 1—4 следует рассматривать совместно, как о геометрии пространства-времени. Содержанием О. т. является рассмотрение свойств преобразований 1—4 и следствий из соответствующих принципов инвариантности. Математически О. т. является обобщением геометрии Евклида — геометрией четырёхмерного Минковского пространства .

  Принцип относительности был известен (и справедлив) в классической механике, но свойства преобразований движения при u << c и при u ~ c различны; при u << с релятивистские эффекты исчезают и преобразования движения переходят в преобразования инвариантности, справедливые для классической механики (преобразования Галилея; см. Галилея принцип относительности ). Поэтому различают релятивистский принцип относительности, обычно называют принципом относительности Эйнштейна, и нерелятивистский принцип относительности Галилея.

  Основное понятие О. т. — точечное событие, т.е. нечто, происходящее в данной точке пространства в данный момент времени (например, световая вспышка, распад элементарной частицы). Это понятие является абстракцией — реальные события всегда имеют некоторую протяжённость в пространстве и во времени и могут рассматриваться как точечные только приближённо. Любой физический процесс есть последовательность событий (С )—C 1 , C 2 ,..., Сп ,.... Справедливость симметрий 1—4 означает, что наряду с последовательностью (С ) законы природы допускают существование бесконечного числа др. последовательностей (С *), которые получаются из (С ) соответствующим преобразованием и различаются положением событий в пространстве и времени, но имеют одинаковую с (С ) внутреннюю структуру. Например, в случае симметрии 4 процесс (С ) можно наглядно описать как происходящий в стоящем на земле самолёте, а процесс (С *) — как такой же процесс, происходящий в самолёте, летящем с постоянной скоростью (относительно земли); различным скоростям и направлениям движения соответствуют различные последовательности (С *). Преобразования, переводящие одну последовательность событий в другую, называются активными (в отличие от пассивных преобразований, которые связывают координаты одного и того же события в двух системах отсчёта; см. ниже). Совокупность этих преобразований должна удовлетворять определённым свойствам. Прежде всего последовательное применение любых двух преобразований должно представлять собой одно из возможных преобразований [например, переход от системы (1) к системе (2), а затем от системы (2) к системе (3) эквивалентен переходу (1)—(3)]. Кроме того, для каждого преобразования должно существовать обратное преобразование, так что последовательное применение обоих преобразований даёт тождественное (единичное) преобразование, являющееся одним из возможных преобразований системы. Это означает, что совокупность рассматриваемых преобразований (1—4) должна составлять группу в математическом смысле. Эта группа называется группой Пуанкаре (название предложено Ю. Вигнером ). Преобразования группы Пуанкаре носят универсальный характер: они действуют одинаково на события любого типа. Это позволяет считать, что они описывают свойства пространства-времени, а не свойства конкретных процессов. Свойства преобразований Пуанкаре могут быть описаны различными способами (так же, как можно описывать различными способами свойства движений в трёхмерном пространстве); наиболее простое описание получается при использовании инерциальных систем отсчёта и связанных с ними часов. Роль инерционных систем отсчёта (и. с. о.) в О. т. такая же, как роль прямоугольных декартовых координат в геометрии Евклида.

  Инерциальные системы отсчёта

  С той степенью точности, с какой свойства данной области пространства-времени описываются частной О. т., можно ввести и. с. о., в которых описание пространственно-временных закономерностей О. т. принимает особенно простую форму. Под системой отсчёта в этом случае можно подразумевать жёсткую систему твёрдых тел (или её мысленное продолжение), по отношению к которой определяются положения событий, траектории тел и световых лучей. Любая система отсчёта, движущаяся относительно данной и. с. о. равномерно и прямолинейно без вращения, также будет инерциальной, а система отсчёта, вращающаяся или движущаяся ускоренно, уже не будет и. с. о. Следовательно, и. с. о. образуют выделенный класс систем отсчёта. В и. с. о. справедлив закон инерции, т. е. свободная (не испытывающая воздействий др. тел) частица движется в и. с. о. прямолинейно и (при принятой синхронизации часов; см. ниже) равномерно. Требование выполнения закона инерции может быть принято как определение и. с. о. Первый закон Ньютона может рассматриваться при этом как утверждение о существовании таких систем отсчёта. Все и. с. о. равноправны; это равноправие является непосредственным выражением принципа относительности.

  Степень инерциальности системы отсчёта зависит от свойств гравитационных полей, действующих в рассматриваемой области пространства-времени. Количественные критерии применимости частной О. т. и инерциальности систем отсчёта рассматриваются в ОТО.

  В области пространства-времени, в которой справедлива частная О. т., можно пользоваться и неинерционными системами отсчёта (так же, как можно пользоваться криволинейными координатами в геометрии Евклида), но при этом описание свойств пространства-времени оказывается более сложным.

  В данной и. с. о. необходимо определить способ измерения времени и координат. В и. с. о. трёхмерная пространственная геометрия — евклидова, если прямые определить, например, как траектории световых лучей, а расстояния измерять твёрдыми масштабами. Поэтому в данной и. с. о. можно ввести декартовы прямоугольные координаты х , у , z . Для определения времени t события можно принять, что в той точке, где оно произошло, находятся часы, покоящиеся в данной и. с. о. Если события происходят в разных точках A , В , то для сравнения их времён нужно синхронизировать часы в A и В , т.е. определить значение того, что часы в А и В показывают одинаковое время. Обычное определение таково: пусть в момент tA по часам в А посылается сигнал в В , а в момент его прибытия в В посылается такой же сигнал из В в A ; если сигнал пришёл в А в момент t’A , то принимается, что сигнал пришёл в В в момент tB = (tA + tA )/2 и соответственно устанавливаются часы в В . При таком определении времена распространения сигнала из A в В и из В в А одинаковы и равны (tAtA )/2. Сигналами могут служить световые вспышки, звуковые сигналы (если среда, в которой они распространяются, покоится по отношению к данной системе отсчёта), выстрелы из двух одинаковых орудий, установленных в A и В , и т.д., требуется лишь, чтобы условия передачи сигнала из А в В и из В в А были одинаковыми. Целесообразность такого определения времени связана с тем, что в любой и. с. о. отсутствует какое-либо физически выделенное направление; описанная процедура синхронизации часов симметрична относительно A и В и поэтому не вносит анизотропии в способ описания. Отсутствие выделенного направления проявляется в том, что синхронизация любыми сигналами приводит к одному и тому же результату; к такому же результату приводит медленный (с u << с ) перенос часов из A в В . При практических измерениях времён и координат используются многочисленные косвенные методы, при условии, что они дают такой же результат, как и описанные выше процедуры. В любой другой и. с. о. координаты и время измеряются с помощью таких же масштабов и часов, синхронизируемых таким же способом. Заранее не очевидно, что времена, определённые таким образом в двух различных и. с. о., будут одними и теми же, и они действительно оказываются различными. После того как синхронизация произведена, могут измеряться скорости частиц и сигналов в данной и. с. о., в частности скорость распространения световых сигналов. Скорость света в любой и. с. о. всегда равна с .

1 ... 23 24 25 26 27 28 29 30 31 ... 55
На этой странице вы можете бесплатно читать книгу Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ бесплатно.

Оставить комментарий