Рейтинговые книги
Читем онлайн Статистика: конспект лекций - Л. Неганова

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 45

Поскольку в индексе объемного показателя в качестве весов могут выступать различные качественные показатели, возникает вопрос о том, какой же именно их них следует использовать. Этот вопрос в каждом конкретном случае должен решаться в соответствии с той познавательной экономической задачей, которая ставится перед индексом, т. е. выбор тех или иных весов-соизмерителей должен быть обоснован экономически.

В практике экономической и статистической работы в качестве весов агрегатного индекса объема продукции обычно используются цены. Так строятся индексы объема промышленной и сельскохозяйственной продукции, а также индексы физического объема товарооборота.

В ряде случаев изменение объема продукции интересует не само по себе, а с точки зрения его влияния на изменение показателя более сложного порядка: общей стоимости продукции, общей ее себестоимости, общих затрат рабочего времени, общего объема производства на данном его участке и т. п. В таких случаях выбор весов-соизмерителей определяется взаимосвязью показателей-факторов, от которых зависит более сложный показатель.

Чтобы индекс отражал только изменение индексируемого объемного показателя, веса в его числителе и знаменателе фиксируются на уровне одного и того же периода. В практике экономической работы в индексах динамики объемных показателей веса обычно фиксируются на уровне базисного периода (см. формулу 7.2). Это обеспечивает возможность построения систем взаимосвязанных индексов.

Для индивидуальных объемных показателей (объем реализации, объем производительности продукции, посевная площадь) веса выбираются на уровне базисного периода. Например:

где In– сводный индекс урожайности; I – сводный индекс стоимости товарооборота; Iq – сводный индекс себестоимости.

В отличие от индексов качественных показателей, которые исчисляются по сравнимому кругу единиц (сравнимой продукции), сводные индексы объемных показателей в целях полноты и точности должны охватывать весь круг единиц, произведенных (или проданных) в каждом периоде. В связи с этим возникает вопрос о том, какие значения весов следует брать для тех видов продукции, которые в одном из сравниваемых периодов не производились.

В практике статистики в таких случаях применяются два способа. При расчете индексов объема промышленной продукции новые ее виды, для которых нет цен базисного периода, оцениваются условно по ценам текущего периода. При расчете же индексов объема проданных товаров используется метод, основанный на условном предположении, что и цены на новые товары изменились в той же степени, что цены на сравниваемый круг аналогичных товаров.

7.4. Ряды агрегатных индексов с постоянными и переменными весами

При изучении динамики экономических явлений строятся и исчисляются индексы за ряд последовательных периодов. Они образуют ряды либо базисных, либо цепных индексов. В ряду базисныгх индексов сравнение индексируемого показателя в каждом индексе производится с уровнем одного и того же периода, а в ряду цепныгх индексов индексируемый показатель сопоставляется с уровнем предыдущего периода.

В каждом отдельном индексе веса в его числителе и знаменателе обязательно фиксируются на одном и том же уровне. Если же строится ряд индексов, то веса в нем могут быть либо постоянными для всех индексов ряда, либо переменными.

Ряд базисных индексов объема продукции ?q1p0/?q0p0,?q2p0/?q0p0,?q3p0/?q0p0 и т. д. имеет постоянные веса (р0). Постоянные веса (р0) имеет и ряд цепных индексов: ?q1p0/?q0p0,?q2p0/?q1p0,?q3p0/?q2p0 и т. д.

Ряд цепных индексов цен ?p1q1/?p1q0,?p2q2/?p2q0, ?p3q3 /?p3q2 и т. д. построен с переменными весами (в 1-м индексе – q1 во 2-м – q2 и т. д.).

Для индексов динамики с постоянными весами имеет силу взаимосвязь между цепными и базисными темпами роста (индексами):

Таким образом, использование постоянных весов в течение ряда лет позволяет переходить от цепных индексов к базисным, и наоборот. Поэтому ряды индексов объема продукции и объема проданных товаров строятся в статистической практике с постоянными весами. Так, в индексах объема продукции в качестве постоянных весов используются цены, зафиксированные на уровне, который был установлен на 1 января какого-либо базисного года. Такие цены, используемые в течение ряда лет, называются сопо-ставимыгми (фиксированнылми).

Использование в индексах объема продукции (товаров) сопоставимых цен позволяет путем простого суммирования получать итоги за несколько лет. Сопоставимые цены не должны сильно отличаться от действующих (текущих) цен, поэтому их периодически пересматривают, переходя к новым сопоставимым ценам. Чтобы иметь возможность исчислять индексы объема продукции за длительные периоды, в течение которых применялись различные сопоставимые цены, продукцию одного года оценивают как в прежних, так и в новых фиксированных ценах. Индекс за длительный период исчисляют цепным методом, т. е. путем перемножения индексов за отдельные отрезки этого периода.

Ряды индексов качественных показателей, которые экономически правильно взвешивать по весам текущего периода, строятся с переменными весами.

7.5. Построение сводных территориальных индексов

При построении территориальных индексов, т. е. при сравнении показателей в пространстве (межрайонные, сравнение между разными предприятиями и др.), возникают вопросы о выборе базы сравнения и района (объекта), на уровне которого следует зафиксировать веса индекса. В каждом конкретном случае эти вопросы нужно решать исходя из задач исследования. Выбор базы сравнения зависит, в частности, от того, будут ли сравнения двусторонними (например, сравнение показателей двух соседних территориальных единиц) или многосторонними (сравнение показателей нескольких территорий, объектов).

При двусторонних сравнениях каждая территория или объект с одинаковым основанием может быть принят как в качестве сравниваемого, так и в качестве базы сравнения. В связи с этим возникает вопрос о фиксировании весов сводного индекса на уровне того или иного района (объекта). Пусть, например, нужно определить, в какой из двух областей и насколько процентов ниже себестоимость единицы продукции и больше объем ее производства.

Если сравнивать область А с областью Б, достаточно обоснованный и простой путь состоит в том, чтобы зафиксировать в индексе себестоимости в качестве весов объемы продукции в целом по обеим территориям (Q = QA + QБ), тогда получим: Iz =?zQ/?zQ.

При многосторонних сравнениях, например при сравнениях качественных показателей по нескольким областям, нужно, соответственно, расширить и границы территории, на уровне которой фиксируются веса.

В сводных территориальных индексах объемных показателей в качестве весов могут быть приняты средние уровни соответствующих качественных показателей, вычисленные в целом по сравниваемым территориям. Так, в нашем примере

7.6. Средние индексы

В зависимости от методологии расчета индивидуальных и сводных индексов различают средние арифметические и средние гармонические индексы. Другими словами, общий индекс, построенный на базе индивидуального индекса, принимает форму среднего арифметического или гармонического индекса, т. е. он может быть преобразован в средний арифметический и средний гармонический индексы.

Идея построения сводного индекса в виде средней величины из индивидуальных (групповых) индексов вполне объяснима: ведь сводный индекс является общей мерой, характеризующей среднюю величину изменения индексируемого показателя, и, конечно, его величина должна зависеть от величин индивидуальных индексов. А критерием правильности построения сводного индекса в форме средней величины (среднего индекса) является его тождественность агрегатному индексу.

Преобразование агрегатного индекса в средний из индивидуальных (групповых) индексов производится следующим образом: либо в числителе, либо в знаменателе агрегатного индекса индексируемый показатель заменяется его выражением через соответствующий индивидуальный индекс. Если такую замену сделать в числителе, то агрегатный индекс будет преобразован в средний арифметический, если же в знаменателе – то в средний гармонический из индивидуальных индексов.

1 ... 21 22 23 24 25 26 27 28 29 ... 45
На этой странице вы можете бесплатно читать книгу Статистика: конспект лекций - Л. Неганова бесплатно.

Оставить комментарий